不同工艺参数对恒能量密度激光熔融法制备铁基大块金属玻璃力学性能和生物相容性的影响

Niyou Wang , Shuai Chang , Guiwei Li , S Thameem Dheen , A Senthil Kumar , Wenzheng Wu , Qingping Liu , Ji Zhao , Luquan Ren , Jerry Ying Hsi Fuh
{"title":"不同工艺参数对恒能量密度激光熔融法制备铁基大块金属玻璃力学性能和生物相容性的影响","authors":"Niyou Wang ,&nbsp;Shuai Chang ,&nbsp;Guiwei Li ,&nbsp;S Thameem Dheen ,&nbsp;A Senthil Kumar ,&nbsp;Wenzheng Wu ,&nbsp;Qingping Liu ,&nbsp;Ji Zhao ,&nbsp;Luquan Ren ,&nbsp;Jerry Ying Hsi Fuh","doi":"10.1016/j.cjmeam.2022.100038","DOIUrl":null,"url":null,"abstract":"<div><p>The unique properties of bulk metallic glass (BMG) render it an excellent material for bone-implant applications. BMG samples are difficult to produce directly because of the critical cooling rate of molding. Advancements in additive manufacturing technologies, such as selective laser melting (SLM), have enabled the development of BMG. The successful production of materials via SLM relies significantly on the processing parameters; meanwhile, the overall energy density affects the crystallization and, thus, the final properties. Therefore, to further determine the effects of the processing parameters, SLM is performed in this study to print Fe-based BMG with different properties three dimensionally using selected processing parameters but a constant energy density. The printed amorphous Fe-based BMG outperforms the typical 316 L stainless steel (316 L SS) in terms of mechanical properties and corrosion resistance. Moreover, observations from nanoindentation tests indicate that the hardness and elastic modulus of the Fe-based BMG can be customized explicitly by adjusting the SLM processing parameters. Indirect cytotoxicity results show that the Fe-based BMG can enhance the viability of SAOS2 cells, as compared with 316 L SS. These intriguing results show that Fe-based BMG should be investigated further for orthopedic implant applications.</p></div>","PeriodicalId":100243,"journal":{"name":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","volume":"1 3","pages":"Article 100038"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772665722000204/pdfft?md5=e82b02b5773c53eaaa62949e273dac2d&pid=1-s2.0-S2772665722000204-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Effects of Various Processing Parameters on Mechanical Properties and Biocompatibility of Fe-based Bulk Metallic Glass Processed via Selective Laser Melting at Constant Energy Density\",\"authors\":\"Niyou Wang ,&nbsp;Shuai Chang ,&nbsp;Guiwei Li ,&nbsp;S Thameem Dheen ,&nbsp;A Senthil Kumar ,&nbsp;Wenzheng Wu ,&nbsp;Qingping Liu ,&nbsp;Ji Zhao ,&nbsp;Luquan Ren ,&nbsp;Jerry Ying Hsi Fuh\",\"doi\":\"10.1016/j.cjmeam.2022.100038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unique properties of bulk metallic glass (BMG) render it an excellent material for bone-implant applications. BMG samples are difficult to produce directly because of the critical cooling rate of molding. Advancements in additive manufacturing technologies, such as selective laser melting (SLM), have enabled the development of BMG. The successful production of materials via SLM relies significantly on the processing parameters; meanwhile, the overall energy density affects the crystallization and, thus, the final properties. Therefore, to further determine the effects of the processing parameters, SLM is performed in this study to print Fe-based BMG with different properties three dimensionally using selected processing parameters but a constant energy density. The printed amorphous Fe-based BMG outperforms the typical 316 L stainless steel (316 L SS) in terms of mechanical properties and corrosion resistance. Moreover, observations from nanoindentation tests indicate that the hardness and elastic modulus of the Fe-based BMG can be customized explicitly by adjusting the SLM processing parameters. Indirect cytotoxicity results show that the Fe-based BMG can enhance the viability of SAOS2 cells, as compared with 316 L SS. These intriguing results show that Fe-based BMG should be investigated further for orthopedic implant applications.</p></div>\",\"PeriodicalId\":100243,\"journal\":{\"name\":\"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers\",\"volume\":\"1 3\",\"pages\":\"Article 100038\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772665722000204/pdfft?md5=e82b02b5773c53eaaa62949e273dac2d&pid=1-s2.0-S2772665722000204-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772665722000204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772665722000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大块金属玻璃(BMG)的独特性能使其成为骨植入应用的优良材料。由于成型的临界冷却速率,BMG样品很难直接生产。选择性激光熔化(SLM)等增材制造技术的进步促进了BMG的发展。通过SLM成功生产材料在很大程度上依赖于加工参数;同时,总能量密度影响结晶,从而影响最终性能。因此,为了进一步确定工艺参数的影响,本研究采用SLM方法,在一定能量密度下,选择一定的工艺参数,对不同性能的铁基BMG进行三维打印。打印的非晶铁基BMG在机械性能和耐腐蚀性方面优于典型的316 L不锈钢(316 L SS)。此外,纳米压痕试验结果表明,铁基BMG的硬度和弹性模量可以通过调整SLM工艺参数来明确定制。间接细胞毒性结果表明,与316 L SS相比,铁基BMG可以提高SAOS2细胞的活力。这些有趣的结果表明,铁基BMG应该进一步研究其在骨科植入物中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of Various Processing Parameters on Mechanical Properties and Biocompatibility of Fe-based Bulk Metallic Glass Processed via Selective Laser Melting at Constant Energy Density

Effects of Various Processing Parameters on Mechanical Properties and Biocompatibility of Fe-based Bulk Metallic Glass Processed via Selective Laser Melting at Constant Energy Density

The unique properties of bulk metallic glass (BMG) render it an excellent material for bone-implant applications. BMG samples are difficult to produce directly because of the critical cooling rate of molding. Advancements in additive manufacturing technologies, such as selective laser melting (SLM), have enabled the development of BMG. The successful production of materials via SLM relies significantly on the processing parameters; meanwhile, the overall energy density affects the crystallization and, thus, the final properties. Therefore, to further determine the effects of the processing parameters, SLM is performed in this study to print Fe-based BMG with different properties three dimensionally using selected processing parameters but a constant energy density. The printed amorphous Fe-based BMG outperforms the typical 316 L stainless steel (316 L SS) in terms of mechanical properties and corrosion resistance. Moreover, observations from nanoindentation tests indicate that the hardness and elastic modulus of the Fe-based BMG can be customized explicitly by adjusting the SLM processing parameters. Indirect cytotoxicity results show that the Fe-based BMG can enhance the viability of SAOS2 cells, as compared with 316 L SS. These intriguing results show that Fe-based BMG should be investigated further for orthopedic implant applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信