仿射Weyl群中的典型左细胞和最低双面细胞

IF 0.1 Q4 MATHEMATICS
N. Xi
{"title":"仿射Weyl群中的典型左细胞和最低双面细胞","authors":"N. Xi","doi":"10.21915/bimas.2018304","DOIUrl":null,"url":null,"abstract":"We give some discussions to the relations between canonical left cells and the lowest two-sided cell of an affine Weyl group. In particular, we use the relations to construct irreducible modules attached to the lowest two-sided cell and some one dimensional representations of an affine Hecke algebra.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2011-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canonical Left Cells and the Lowest Two-sided Cell in an Affine Weyl Group\",\"authors\":\"N. Xi\",\"doi\":\"10.21915/bimas.2018304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give some discussions to the relations between canonical left cells and the lowest two-sided cell of an affine Weyl group. In particular, we use the relations to construct irreducible modules attached to the lowest two-sided cell and some one dimensional representations of an affine Hecke algebra.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2011-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/bimas.2018304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2018304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

讨论了仿射Weyl群的典型左胞与最低双侧胞之间的关系。特别地,我们利用这些关系构造了附在最低的双面元上的不可约模和仿射Hecke代数的一些一维表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical Left Cells and the Lowest Two-sided Cell in an Affine Weyl Group
We give some discussions to the relations between canonical left cells and the lowest two-sided cell of an affine Weyl group. In particular, we use the relations to construct irreducible modules attached to the lowest two-sided cell and some one dimensional representations of an affine Hecke algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信