学习捆绑调整:一种快速优化车辆SLAM捆绑调整的图网络方法

Tetsuya Tanaka, Socionext Inc, Yukihiro Sasagawa, Takayuki Okatani
{"title":"学习捆绑调整:一种快速优化车辆SLAM捆绑调整的图网络方法","authors":"Tetsuya Tanaka, Socionext Inc, Yukihiro Sasagawa, Takayuki Okatani","doi":"10.1109/ICCV48922.2021.00619","DOIUrl":null,"url":null,"abstract":"Bundle adjustment (BA) occupies a large portion of the execution time of SfM and visual SLAM. Local BA over the latest several keyframes plays a crucial role in visual SLAM. Its execution time should be sufficiently short for robust tracking; this is especially critical for embedded systems with a limited computational resource. This study proposes a learning-based bundle adjuster using a graph network. It works faster and can be used instead of conventional optimization-based BA. The graph network operates on a graph consisting of the nodes of keyframes and landmarks and the edges representing the landmarks’ visibility. The graph network receives the parameters’ initial values as inputs and predicts their updates to the optimal values. It internally uses an intermediate representation of inputs which we design inspired by the normal equation of the Levenberg-Marquardt method. It is trained using the sum of reprojection errors as a loss function. The experiments show that the proposed method outputs parameter estimates with slightly inferior accuracy in 1/60–1/10 of time compared with the conventional BA.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"1 1","pages":"6230-6239"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Learning to Bundle-adjust: A Graph Network Approach to Faster Optimization of Bundle Adjustment for Vehicular SLAM\",\"authors\":\"Tetsuya Tanaka, Socionext Inc, Yukihiro Sasagawa, Takayuki Okatani\",\"doi\":\"10.1109/ICCV48922.2021.00619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bundle adjustment (BA) occupies a large portion of the execution time of SfM and visual SLAM. Local BA over the latest several keyframes plays a crucial role in visual SLAM. Its execution time should be sufficiently short for robust tracking; this is especially critical for embedded systems with a limited computational resource. This study proposes a learning-based bundle adjuster using a graph network. It works faster and can be used instead of conventional optimization-based BA. The graph network operates on a graph consisting of the nodes of keyframes and landmarks and the edges representing the landmarks’ visibility. The graph network receives the parameters’ initial values as inputs and predicts their updates to the optimal values. It internally uses an intermediate representation of inputs which we design inspired by the normal equation of the Levenberg-Marquardt method. It is trained using the sum of reprojection errors as a loss function. The experiments show that the proposed method outputs parameter estimates with slightly inferior accuracy in 1/60–1/10 of time compared with the conventional BA.\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"1 1\",\"pages\":\"6230-6239\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.00619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Bundle adjustment (BA)在SfM和visual SLAM的执行时间中占据了很大一部分。最近几个关键帧的本地BA在视觉SLAM中起着至关重要的作用。它的执行时间应该足够短,以便进行鲁棒跟踪;这对于计算资源有限的嵌入式系统尤其重要。本文提出了一种基于学习的束调节器。它的工作速度更快,可以代替传统的基于优化的BA。图网络在一个图上运行,这个图由关键帧和地标的节点以及代表地标可见性的边组成。图网络接收参数的初始值作为输入,并预测其更新到最优值。它在内部使用输入的中间表示,我们设计的灵感来自Levenberg-Marquardt方法的正规方程。它使用重投影误差的和作为损失函数来训练。实验表明,该方法在1/60-1/10的时间内输出的参数估计精度略低于传统的BA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Bundle-adjust: A Graph Network Approach to Faster Optimization of Bundle Adjustment for Vehicular SLAM
Bundle adjustment (BA) occupies a large portion of the execution time of SfM and visual SLAM. Local BA over the latest several keyframes plays a crucial role in visual SLAM. Its execution time should be sufficiently short for robust tracking; this is especially critical for embedded systems with a limited computational resource. This study proposes a learning-based bundle adjuster using a graph network. It works faster and can be used instead of conventional optimization-based BA. The graph network operates on a graph consisting of the nodes of keyframes and landmarks and the edges representing the landmarks’ visibility. The graph network receives the parameters’ initial values as inputs and predicts their updates to the optimal values. It internally uses an intermediate representation of inputs which we design inspired by the normal equation of the Levenberg-Marquardt method. It is trained using the sum of reprojection errors as a loss function. The experiments show that the proposed method outputs parameter estimates with slightly inferior accuracy in 1/60–1/10 of time compared with the conventional BA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信