基于单层石墨烯片的纳米机电谐振器作为质量检测

M. An, Shehata Wi, Phillips Ah
{"title":"基于单层石墨烯片的纳米机电谐振器作为质量检测","authors":"M. An, Shehata Wi, Phillips Ah","doi":"10.4172/2469-410X.1000125","DOIUrl":null,"url":null,"abstract":"Mass detection of molecules using single layer graphene sheet is investigated in the present paper. A nanoelectromechanical system resonator device is proposed which is modeled as single layer graphene coupled to electronic transport through such device via two metallic leads. The conductance of such device is deduced by solving eigenvalue differential equation. The influence of both photon energy of an induced ac-field and magnetic field are taken into consideration. The present results show that both the resonant frequency shift and the quality factor are very sensitive to the mass of certain molecule. Also, the photon energy of the induced ac-field enhances the sensitivity of these parameters. The present research is very important for detecting the mass of both chemical molecules and bio-molecules. This can be achieved experimentally by measuring the quantum conductance of the present device, which is related to the resonant frequency shift and the quality factor.","PeriodicalId":92245,"journal":{"name":"Journal of lasers, optics & photonics","volume":"48 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single Layer Graphene Sheet-based Nanoelectromechanical Resonator as Mass Detection\",\"authors\":\"M. An, Shehata Wi, Phillips Ah\",\"doi\":\"10.4172/2469-410X.1000125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mass detection of molecules using single layer graphene sheet is investigated in the present paper. A nanoelectromechanical system resonator device is proposed which is modeled as single layer graphene coupled to electronic transport through such device via two metallic leads. The conductance of such device is deduced by solving eigenvalue differential equation. The influence of both photon energy of an induced ac-field and magnetic field are taken into consideration. The present results show that both the resonant frequency shift and the quality factor are very sensitive to the mass of certain molecule. Also, the photon energy of the induced ac-field enhances the sensitivity of these parameters. The present research is very important for detecting the mass of both chemical molecules and bio-molecules. This can be achieved experimentally by measuring the quantum conductance of the present device, which is related to the resonant frequency shift and the quality factor.\",\"PeriodicalId\":92245,\"journal\":{\"name\":\"Journal of lasers, optics & photonics\",\"volume\":\"48 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of lasers, optics & photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2469-410X.1000125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers, optics & photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-410X.1000125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了单层石墨烯片的分子质量检测。提出了一种纳米机电系统谐振器器件,其模型为单层石墨烯通过两根金属引线耦合电子输运。通过求解特征值微分方程,推导出该器件的电导。同时考虑了感应电场和磁场对光子能量的影响。结果表明,共振频移和质量因子对某些分子的质量非常敏感。同时,感应电场的光子能量提高了这些参数的灵敏度。本研究对化学分子和生物分子的质量检测具有重要意义。这可以通过实验测量器件的量子电导来实现,量子电导与谐振频移和品质因子有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single Layer Graphene Sheet-based Nanoelectromechanical Resonator as Mass Detection
Mass detection of molecules using single layer graphene sheet is investigated in the present paper. A nanoelectromechanical system resonator device is proposed which is modeled as single layer graphene coupled to electronic transport through such device via two metallic leads. The conductance of such device is deduced by solving eigenvalue differential equation. The influence of both photon energy of an induced ac-field and magnetic field are taken into consideration. The present results show that both the resonant frequency shift and the quality factor are very sensitive to the mass of certain molecule. Also, the photon energy of the induced ac-field enhances the sensitivity of these parameters. The present research is very important for detecting the mass of both chemical molecules and bio-molecules. This can be achieved experimentally by measuring the quantum conductance of the present device, which is related to the resonant frequency shift and the quality factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信