约束势下一维输运方程解的相混合

IF 1 4区 数学 Q1 MATHEMATICS
S. Chaturvedi, J. Luk
{"title":"约束势下一维输运方程解的相混合","authors":"S. Chaturvedi, J. Luk","doi":"10.3934/krm.2022002","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Consider the linear transport equation in 1D under an external confining potential <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Phi $\\end{document}</tex-math></inline-formula>:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{equation*} {\\partial}_t f + v {\\partial}_x f - {\\partial}_x \\Phi {\\partial}_v f = 0. \\end{equation*} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>For <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\Phi = \\frac {x^2}2 + \\frac { \\varepsilon x^4}2 $\\end{document}</tex-math></inline-formula> (with <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\varepsilon >0 $\\end{document}</tex-math></inline-formula> small), we prove phase mixing and quantitative decay estimates for <inline-formula><tex-math id=\"M4\">\\begin{document}$ {\\partial}_t \\varphi : = - \\Delta^{-1} \\int_{ \\mathbb{R}} {\\partial}_t f \\, \\mathrm{d} v $\\end{document}</tex-math></inline-formula>, with an inverse polynomial decay rate <inline-formula><tex-math id=\"M5\">\\begin{document}$ O({\\langle} t{\\rangle}^{-2}) $\\end{document}</tex-math></inline-formula>. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in <inline-formula><tex-math id=\"M6\">\\begin{document}$ 1 $\\end{document}</tex-math></inline-formula>D under the external potential <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\Phi $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Phase mixing for solutions to 1D transport equation in a confining potential\",\"authors\":\"S. Chaturvedi, J. Luk\",\"doi\":\"10.3934/krm.2022002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Consider the linear transport equation in 1D under an external confining potential <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\Phi $\\\\end{document}</tex-math></inline-formula>:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\begin{equation*} {\\\\partial}_t f + v {\\\\partial}_x f - {\\\\partial}_x \\\\Phi {\\\\partial}_v f = 0. \\\\end{equation*} $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>For <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\Phi = \\\\frac {x^2}2 + \\\\frac { \\\\varepsilon x^4}2 $\\\\end{document}</tex-math></inline-formula> (with <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\varepsilon >0 $\\\\end{document}</tex-math></inline-formula> small), we prove phase mixing and quantitative decay estimates for <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ {\\\\partial}_t \\\\varphi : = - \\\\Delta^{-1} \\\\int_{ \\\\mathbb{R}} {\\\\partial}_t f \\\\, \\\\mathrm{d} v $\\\\end{document}</tex-math></inline-formula>, with an inverse polynomial decay rate <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ O({\\\\langle} t{\\\\rangle}^{-2}) $\\\\end{document}</tex-math></inline-formula>. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ 1 $\\\\end{document}</tex-math></inline-formula>D under the external potential <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\Phi $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2022002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2022002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

Consider the linear transport equation in 1D under an external confining potential \begin{document}$ \Phi $\end{document}: \begin{document}$ \begin{equation*} {\partial}_t f + v {\partial}_x f - {\partial}_x \Phi {\partial}_v f = 0. \end{equation*} $\end{document} For \begin{document}$ \Phi = \frac {x^2}2 + \frac { \varepsilon x^4}2 $\end{document} (with \begin{document}$ \varepsilon >0 $\end{document} small), we prove phase mixing and quantitative decay estimates for \begin{document}$ {\partial}_t \varphi : = - \Delta^{-1} \int_{ \mathbb{R}} {\partial}_t f \, \mathrm{d} v $\end{document}, with an inverse polynomial decay rate \begin{document}$ O({\langle} t{\rangle}^{-2}) $\end{document}. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in \begin{document}$ 1 $\end{document}D under the external potential \begin{document}$ \Phi $\end{document}.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase mixing for solutions to 1D transport equation in a confining potential

Consider the linear transport equation in 1D under an external confining potential \begin{document}$ \Phi $\end{document}:

For \begin{document}$ \Phi = \frac {x^2}2 + \frac { \varepsilon x^4}2 $\end{document} (with \begin{document}$ \varepsilon >0 $\end{document} small), we prove phase mixing and quantitative decay estimates for \begin{document}$ {\partial}_t \varphi : = - \Delta^{-1} \int_{ \mathbb{R}} {\partial}_t f \, \mathrm{d} v $\end{document}, with an inverse polynomial decay rate \begin{document}$ O({\langle} t{\rangle}^{-2}) $\end{document}. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in \begin{document}$ 1 $\end{document}D under the external potential \begin{document}$ \Phi $\end{document}.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信