Sung-Wan Hong, Tae-Hwang Kong, Seungchul Jung, Sungwoo Lee, Se-Won Wang, Jong-Pil Im, G. Cho
{"title":"基于时模米勒补偿(TMMC)的高效率DC-DC变换器","authors":"Sung-Wan Hong, Tae-Hwang Kong, Seungchul Jung, Sungwoo Lee, Se-Won Wang, Jong-Pil Im, G. Cho","doi":"10.1109/VLSIC.2012.6243849","DOIUrl":null,"url":null,"abstract":"For the controller design of a DC-DC converter, a Time-Mode Miller Compensation (TMMC) is introduced in this paper. Using this concept, the consuming area of the DC-DC converter can be significantly reduced without any off-chip compensation components. The chip is implemented in 0.18μm I/O CMOS whose size is similar to 0.35μm CMOS, and the core size of this work is only 0.12mm2. Peak efficiency is 90.6%, with switching frequency of 1.15MHz.","PeriodicalId":6347,"journal":{"name":"2012 Symposium on VLSI Circuits (VLSIC)","volume":"46 1","pages":"180-181"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"High area-efficient DC-DC converter using Time-Mode Miller Compensation (TMMC)\",\"authors\":\"Sung-Wan Hong, Tae-Hwang Kong, Seungchul Jung, Sungwoo Lee, Se-Won Wang, Jong-Pil Im, G. Cho\",\"doi\":\"10.1109/VLSIC.2012.6243849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the controller design of a DC-DC converter, a Time-Mode Miller Compensation (TMMC) is introduced in this paper. Using this concept, the consuming area of the DC-DC converter can be significantly reduced without any off-chip compensation components. The chip is implemented in 0.18μm I/O CMOS whose size is similar to 0.35μm CMOS, and the core size of this work is only 0.12mm2. Peak efficiency is 90.6%, with switching frequency of 1.15MHz.\",\"PeriodicalId\":6347,\"journal\":{\"name\":\"2012 Symposium on VLSI Circuits (VLSIC)\",\"volume\":\"46 1\",\"pages\":\"180-181\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Symposium on VLSI Circuits (VLSIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2012.6243849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Symposium on VLSI Circuits (VLSIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2012.6243849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High area-efficient DC-DC converter using Time-Mode Miller Compensation (TMMC)
For the controller design of a DC-DC converter, a Time-Mode Miller Compensation (TMMC) is introduced in this paper. Using this concept, the consuming area of the DC-DC converter can be significantly reduced without any off-chip compensation components. The chip is implemented in 0.18μm I/O CMOS whose size is similar to 0.35μm CMOS, and the core size of this work is only 0.12mm2. Peak efficiency is 90.6%, with switching frequency of 1.15MHz.