使用主动深度学习对临床试验中的资格标准进行分类

C. Chuan
{"title":"使用主动深度学习对临床试验中的资格标准进行分类","authors":"C. Chuan","doi":"10.1109/ICMLA.2018.00052","DOIUrl":null,"url":null,"abstract":"In this paper we propose an active deep learning approach to automatically classify eligibility criteria of clinical trials, an application that has not been explored in machine learning. We collected all clinical trial data from the National Cancer Institute website, and applied word2vec to learn word embeddings for eligibility criteria. Criteria encoded with word embeddings were then fed into a multi-layer convolution neural network (CNN) for classification. To overcome the challenge of non-existing class labels, we designed an active learning algorithm that uses uncertainty cluster sampling to navigate the dataset and strategically propagate obtained labels to expand the training set for CNN. Experimental results show that word2vec successfully learns meaningful embeddings in criteria data, and the active deep learning approach reports a significant lower error rate in classification than the baseline k-nearest neighbor method.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1","pages":"305-310"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Classifying Eligibility Criteria in Clinical Trials Using Active Deep Learning\",\"authors\":\"C. Chuan\",\"doi\":\"10.1109/ICMLA.2018.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose an active deep learning approach to automatically classify eligibility criteria of clinical trials, an application that has not been explored in machine learning. We collected all clinical trial data from the National Cancer Institute website, and applied word2vec to learn word embeddings for eligibility criteria. Criteria encoded with word embeddings were then fed into a multi-layer convolution neural network (CNN) for classification. To overcome the challenge of non-existing class labels, we designed an active learning algorithm that uses uncertainty cluster sampling to navigate the dataset and strategically propagate obtained labels to expand the training set for CNN. Experimental results show that word2vec successfully learns meaningful embeddings in criteria data, and the active deep learning approach reports a significant lower error rate in classification than the baseline k-nearest neighbor method.\",\"PeriodicalId\":6533,\"journal\":{\"name\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"1 1\",\"pages\":\"305-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2018.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们提出了一种主动深度学习方法来自动分类临床试验的资格标准,这是机器学习中尚未探索的应用。我们从国家癌症研究所网站上收集了所有的临床试验数据,并应用word2vec来学习符合资格标准的词嵌入。然后将用词嵌入编码的标准输入到多层卷积神经网络(CNN)中进行分类。为了克服不存在类标签的挑战,我们设计了一种主动学习算法,该算法使用不确定性聚类采样来导航数据集,并有策略地传播获得的标签来扩展CNN的训练集。实验结果表明,word2vec成功地在标准数据中学习了有意义的嵌入,并且主动深度学习方法的分类错误率明显低于基线k近邻方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying Eligibility Criteria in Clinical Trials Using Active Deep Learning
In this paper we propose an active deep learning approach to automatically classify eligibility criteria of clinical trials, an application that has not been explored in machine learning. We collected all clinical trial data from the National Cancer Institute website, and applied word2vec to learn word embeddings for eligibility criteria. Criteria encoded with word embeddings were then fed into a multi-layer convolution neural network (CNN) for classification. To overcome the challenge of non-existing class labels, we designed an active learning algorithm that uses uncertainty cluster sampling to navigate the dataset and strategically propagate obtained labels to expand the training set for CNN. Experimental results show that word2vec successfully learns meaningful embeddings in criteria data, and the active deep learning approach reports a significant lower error rate in classification than the baseline k-nearest neighbor method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信