次氯酸钠处理椰子纤维混凝土的抗压和抗弯强度

IF 1.1 Q4 ENGINEERING, MECHANICAL
N. Ibrahim
{"title":"次氯酸钠处理椰子纤维混凝土的抗压和抗弯强度","authors":"N. Ibrahim","doi":"10.24191/jmeche.v20i2.22058","DOIUrl":null,"url":null,"abstract":"Concrete needs to be reinforced to improve its engineering qualities. Coconut fibres were employed for this study since they are widely accessible and come in big numbers. The study compares the qualities of plain concrete and concrete reinforced with coconut fibre based on a laboratory experiment. Better management of these waste fibres will result from using coconut fibres. Two types of coconut fibre treatment were employed – treatment with tap water and treatment with sodium hypochlorite. It is found in this study that adding 1% of coconut fibre does not increase the concrete strength after 7 and 14 days of curing. However, it was discovered that using 1% coconut fibres treated using tap water increased the compressive and flexural strength of the concrete after 28 days of curing by roughly 4% and 3%, respectively. Compressive and flexural strength development agrees very well with each other. Hence, it is concluded that 1% was the ideal fibre concentration (by weight of cement) to obtain a better 28th day of compressive and flexural strength, although not for 7 and 14 days. However, concrete with the highest strengths demonstrated a very low slump value, only 20 mm. A smaller or bigger slump value showed smaller concrete strengths.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Concrete with Coconut Fibre Treated with Sodium Hypochlorite – Compressive and Flexural Strength\",\"authors\":\"N. Ibrahim\",\"doi\":\"10.24191/jmeche.v20i2.22058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concrete needs to be reinforced to improve its engineering qualities. Coconut fibres were employed for this study since they are widely accessible and come in big numbers. The study compares the qualities of plain concrete and concrete reinforced with coconut fibre based on a laboratory experiment. Better management of these waste fibres will result from using coconut fibres. Two types of coconut fibre treatment were employed – treatment with tap water and treatment with sodium hypochlorite. It is found in this study that adding 1% of coconut fibre does not increase the concrete strength after 7 and 14 days of curing. However, it was discovered that using 1% coconut fibres treated using tap water increased the compressive and flexural strength of the concrete after 28 days of curing by roughly 4% and 3%, respectively. Compressive and flexural strength development agrees very well with each other. Hence, it is concluded that 1% was the ideal fibre concentration (by weight of cement) to obtain a better 28th day of compressive and flexural strength, although not for 7 and 14 days. However, concrete with the highest strengths demonstrated a very low slump value, only 20 mm. A smaller or bigger slump value showed smaller concrete strengths.\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24191/jmeche.v20i2.22058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i2.22058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

混凝土需要进行加固,以提高其工程质量。椰子纤维被用于这项研究,因为它们很容易获得,而且数量很多。在室内试验的基础上,对普通混凝土和椰子纤维增强混凝土的性能进行了比较。使用椰子纤维可以更好地管理这些废弃纤维。采用自来水处理和次氯酸钠处理两种方法处理椰子纤维。本研究发现,在养护7d和14d后,加入1%的椰子纤维对混凝土强度没有提高作用。然而,研究发现,使用自来水处理过的1%椰子纤维,在养护28天后,混凝土的抗压强度和抗弯强度分别增加了大约4%和3%。抗压强度和抗弯强度的发展规律吻合得很好。因此,可以得出结论,1%的纤维浓度(按水泥重量计)可以获得较好的28天抗压和抗弯强度,尽管7天和14天不是这样。然而,最高强度混凝土的坍落度值非常低,仅为20 mm。坍落度值越小或越大,混凝土强度越小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concrete with Coconut Fibre Treated with Sodium Hypochlorite – Compressive and Flexural Strength
Concrete needs to be reinforced to improve its engineering qualities. Coconut fibres were employed for this study since they are widely accessible and come in big numbers. The study compares the qualities of plain concrete and concrete reinforced with coconut fibre based on a laboratory experiment. Better management of these waste fibres will result from using coconut fibres. Two types of coconut fibre treatment were employed – treatment with tap water and treatment with sodium hypochlorite. It is found in this study that adding 1% of coconut fibre does not increase the concrete strength after 7 and 14 days of curing. However, it was discovered that using 1% coconut fibres treated using tap water increased the compressive and flexural strength of the concrete after 28 days of curing by roughly 4% and 3%, respectively. Compressive and flexural strength development agrees very well with each other. Hence, it is concluded that 1% was the ideal fibre concentration (by weight of cement) to obtain a better 28th day of compressive and flexural strength, although not for 7 and 14 days. However, concrete with the highest strengths demonstrated a very low slump value, only 20 mm. A smaller or bigger slump value showed smaller concrete strengths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信