湍流中间歇的几何形状

Diogo Queiros-Condé
{"title":"湍流中间歇的几何形状","authors":"Diogo Queiros-Condé","doi":"10.1016/S1287-4620(00)87509-2","DOIUrl":null,"url":null,"abstract":"<div><p>A geometrical interpretation of intermittency in fully developed turbulence is realized through an hierarchy of fractal structures Ω<sub>p</sub> of dimensions <em>Δ</em><sub>p</sub> linked each other by the relations Ω<sub>p + <em>1</em></sub> − Ω<sub>p</sub> (i.e. <em>Δ</em><sub>p + <em>1</em></sub> &lt; <em>Δ</em><sub>p</sub>) and γ = (<em>Δ</em><sub>p + 1</sub> − <em>Δ<sub>∞</sub></em>)/(<em>Δ</em><sub>p</sub> − <em>Δ<sub>∞</sub></em>) with γ = <em>((1 + 3/√8)<sup>1/3</sup> + (1 − 3/√8)<sup>1/3</sup>)<sup>3</sup></em> and <em>Δ<sub>∞</sub> = 1</em> and <em>Δ<sub>∞</sub> = 1</em>. This is obtained by the introduction of an entropy jump, defined at the scale r, <em>Δ</em>S<sub>p</sub>(r) = (<em>Δ</em><sub>p + <em>1</em></sub> − <em>Δ</em><sub>p</sub>) <em>ln</em> (r/r<sub><em>0</em></sub>) characterizing the order level of each sub-structure Ω<sub>p</sub> and verifying a linear relation <em>Δ</em>S<sub>p</sub>(r) = γ <em>Δ</em>S<sub>p − <em>1</em></sub>(r).</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"327 14","pages":"Pages 1385-1390"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)87509-2","citationCount":"5","resultStr":"{\"title\":\"Géométrie de l'intermittence en turbulence développée\",\"authors\":\"Diogo Queiros-Condé\",\"doi\":\"10.1016/S1287-4620(00)87509-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A geometrical interpretation of intermittency in fully developed turbulence is realized through an hierarchy of fractal structures Ω<sub>p</sub> of dimensions <em>Δ</em><sub>p</sub> linked each other by the relations Ω<sub>p + <em>1</em></sub> − Ω<sub>p</sub> (i.e. <em>Δ</em><sub>p + <em>1</em></sub> &lt; <em>Δ</em><sub>p</sub>) and γ = (<em>Δ</em><sub>p + 1</sub> − <em>Δ<sub>∞</sub></em>)/(<em>Δ</em><sub>p</sub> − <em>Δ<sub>∞</sub></em>) with γ = <em>((1 + 3/√8)<sup>1/3</sup> + (1 − 3/√8)<sup>1/3</sup>)<sup>3</sup></em> and <em>Δ<sub>∞</sub> = 1</em> and <em>Δ<sub>∞</sub> = 1</em>. This is obtained by the introduction of an entropy jump, defined at the scale r, <em>Δ</em>S<sub>p</sub>(r) = (<em>Δ</em><sub>p + <em>1</em></sub> − <em>Δ</em><sub>p</sub>) <em>ln</em> (r/r<sub><em>0</em></sub>) characterizing the order level of each sub-structure Ω<sub>p</sub> and verifying a linear relation <em>Δ</em>S<sub>p</sub>(r) = γ <em>Δ</em>S<sub>p − <em>1</em></sub>(r).</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"327 14\",\"pages\":\"Pages 1385-1390\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(00)87509-2\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1287462000875092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000875092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

充分发展的湍流中间歇性的几何解释是通过分形结构的层次结构Ωp实现的,这些分形结构的维度Δp通过Ωp + 1−Ωp(即Δp + 1 <Δp)和γ=(Δp + 1−Δ∞)/(Δp−Δ∞)γ=((1 + 3 /√8)1/3 +(1−3 /√8)1/3)3和Δ∞= 1,Δ∞= 1。这是通过引入熵跳得到的,定义在尺度r, ΔSp(r) = (Δp + 1−Δp) ln (r/r0)表征每个子结构的有序水平Ωp并验证线性关系ΔSp(r) = γ ΔSp−1(r)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Géométrie de l'intermittence en turbulence développée

A geometrical interpretation of intermittency in fully developed turbulence is realized through an hierarchy of fractal structures Ωp of dimensions Δp linked each other by the relations Ωp + 1 − Ωp (i.e. Δp + 1 < Δp) and γ = (Δp + 1Δ)/(ΔpΔ) with γ = ((1 + 3/√8)1/3 + (1 − 3/√8)1/3)3 and Δ = 1 and Δ = 1. This is obtained by the introduction of an entropy jump, defined at the scale r, ΔSp(r) = (Δp + 1Δp) ln (r/r0) characterizing the order level of each sub-structure Ωp and verifying a linear relation ΔSp(r) = γ ΔSp − 1(r).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信