基于路径计数方法的量子行走的广义特征函数

T. Komatsu, N. Konno, Hisashi Morioka, E. Segawa
{"title":"基于路径计数方法的量子行走的广义特征函数","authors":"T. Komatsu, N. Konno, Hisashi Morioka, E. Segawa","doi":"10.1142/S0129055X21500197","DOIUrl":null,"url":null,"abstract":"We consider the time-independent scattering theory for time evolution operators of one-dimensional two-state quantum walks. The scattering matrix associated with the position-dependent quantum walk naturally appears in the asymptotic behavior at spatial infinity of generalized eigenfunctions. The asymptotic behavior of generalized eigenfunctions is a consequence of an explicit expression of the Green function associated with the free quantum walk. When the position-dependent quantum walk is a finite rank perturbation of the free quantum walk, we derive a kind of combinatorial constructions of the scattering matrix by counting paths of quantum walkers. We also mention some remarks on the tunneling effect.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Generalized eigenfunctions for quantum walks via path counting approach\",\"authors\":\"T. Komatsu, N. Konno, Hisashi Morioka, E. Segawa\",\"doi\":\"10.1142/S0129055X21500197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the time-independent scattering theory for time evolution operators of one-dimensional two-state quantum walks. The scattering matrix associated with the position-dependent quantum walk naturally appears in the asymptotic behavior at spatial infinity of generalized eigenfunctions. The asymptotic behavior of generalized eigenfunctions is a consequence of an explicit expression of the Green function associated with the free quantum walk. When the position-dependent quantum walk is a finite rank perturbation of the free quantum walk, we derive a kind of combinatorial constructions of the scattering matrix by counting paths of quantum walkers. We also mention some remarks on the tunneling effect.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129055X21500197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129055X21500197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

考虑一维二态量子行走时间演化算符的时间无关散射理论。与位置相关的量子行走相关的散射矩阵自然地出现在广义本征函数在空间无穷远处的渐近行为中。广义本征函数的渐近行为是与自由量子行走相关的格林函数的显式表达的结果。当位置相关量子行走是自由量子行走的有限阶摄动时,我们通过计算量子行走的路径推导出一种散射矩阵的组合结构。我们还提到了一些关于隧道效应的评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized eigenfunctions for quantum walks via path counting approach
We consider the time-independent scattering theory for time evolution operators of one-dimensional two-state quantum walks. The scattering matrix associated with the position-dependent quantum walk naturally appears in the asymptotic behavior at spatial infinity of generalized eigenfunctions. The asymptotic behavior of generalized eigenfunctions is a consequence of an explicit expression of the Green function associated with the free quantum walk. When the position-dependent quantum walk is a finite rank perturbation of the free quantum walk, we derive a kind of combinatorial constructions of the scattering matrix by counting paths of quantum walkers. We also mention some remarks on the tunneling effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信