{"title":"基于路径计数方法的量子行走的广义特征函数","authors":"T. Komatsu, N. Konno, Hisashi Morioka, E. Segawa","doi":"10.1142/S0129055X21500197","DOIUrl":null,"url":null,"abstract":"We consider the time-independent scattering theory for time evolution operators of one-dimensional two-state quantum walks. The scattering matrix associated with the position-dependent quantum walk naturally appears in the asymptotic behavior at spatial infinity of generalized eigenfunctions. The asymptotic behavior of generalized eigenfunctions is a consequence of an explicit expression of the Green function associated with the free quantum walk. When the position-dependent quantum walk is a finite rank perturbation of the free quantum walk, we derive a kind of combinatorial constructions of the scattering matrix by counting paths of quantum walkers. We also mention some remarks on the tunneling effect.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Generalized eigenfunctions for quantum walks via path counting approach\",\"authors\":\"T. Komatsu, N. Konno, Hisashi Morioka, E. Segawa\",\"doi\":\"10.1142/S0129055X21500197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the time-independent scattering theory for time evolution operators of one-dimensional two-state quantum walks. The scattering matrix associated with the position-dependent quantum walk naturally appears in the asymptotic behavior at spatial infinity of generalized eigenfunctions. The asymptotic behavior of generalized eigenfunctions is a consequence of an explicit expression of the Green function associated with the free quantum walk. When the position-dependent quantum walk is a finite rank perturbation of the free quantum walk, we derive a kind of combinatorial constructions of the scattering matrix by counting paths of quantum walkers. We also mention some remarks on the tunneling effect.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129055X21500197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129055X21500197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalized eigenfunctions for quantum walks via path counting approach
We consider the time-independent scattering theory for time evolution operators of one-dimensional two-state quantum walks. The scattering matrix associated with the position-dependent quantum walk naturally appears in the asymptotic behavior at spatial infinity of generalized eigenfunctions. The asymptotic behavior of generalized eigenfunctions is a consequence of an explicit expression of the Green function associated with the free quantum walk. When the position-dependent quantum walk is a finite rank perturbation of the free quantum walk, we derive a kind of combinatorial constructions of the scattering matrix by counting paths of quantum walkers. We also mention some remarks on the tunneling effect.