{"title":"神经网络在链梯预约中的应用","authors":"Mario V. Wuthrich","doi":"10.2139/ssrn.2966126","DOIUrl":null,"url":null,"abstract":"Classical claims reserving methods act on so-called claims reserving triangles which are aggregated insurance portfolios. A crucial assumption in classical claims reserving is that these aggregated portfolios are sufficiently homogeneous so that a coarse reserving algorithm can be applied. We start from such a coarse reserving method, which in our case is Mack's chain-ladder method, and show how this approach can be refined for heterogeneity and individual claims feature information using neural networks.","PeriodicalId":82443,"journal":{"name":"Real property, probate, and trust journal","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Neural Networks Applied to Chain-Ladder Reserving\",\"authors\":\"Mario V. Wuthrich\",\"doi\":\"10.2139/ssrn.2966126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical claims reserving methods act on so-called claims reserving triangles which are aggregated insurance portfolios. A crucial assumption in classical claims reserving is that these aggregated portfolios are sufficiently homogeneous so that a coarse reserving algorithm can be applied. We start from such a coarse reserving method, which in our case is Mack's chain-ladder method, and show how this approach can be refined for heterogeneity and individual claims feature information using neural networks.\",\"PeriodicalId\":82443,\"journal\":{\"name\":\"Real property, probate, and trust journal\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real property, probate, and trust journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2966126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real property, probate, and trust journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2966126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classical claims reserving methods act on so-called claims reserving triangles which are aggregated insurance portfolios. A crucial assumption in classical claims reserving is that these aggregated portfolios are sufficiently homogeneous so that a coarse reserving algorithm can be applied. We start from such a coarse reserving method, which in our case is Mack's chain-ladder method, and show how this approach can be refined for heterogeneity and individual claims feature information using neural networks.