基于类别共现的多对象识别

Takahiro Okabe, Yuhi Kondo, Kris M. Kitani, Yoichi Sato
{"title":"基于类别共现的多对象识别","authors":"Takahiro Okabe, Yuhi Kondo, Kris M. Kitani, Yoichi Sato","doi":"10.2201/NIIPI.2010.7.6","DOIUrl":null,"url":null,"abstract":"Most previous methods for generic object recognition explicitly or implicitly assume that an image contains objects from a single category, although objects from multiple categories often appear together in an image. In this paper, we present a novel method for object recognition that explicitly deals with objects of multiple categories coexisting in an image. Furthermore, our proposed method aims to recognize objects by taking advantage of a scene’s context represented by the co-occurrence relationship between object categories. Specifically, our method estimates the mixture ratios of multiple categories in an image via MAP regression, where the likelihood is computed based on the linear combination model of frequency distributions of local features, and the prior probability is computed from the co-occurrence relation. We conducted a number of experiments using the PASCAL dataset, and obtained the results that lend support to the effectiveness of the proposed method.","PeriodicalId":91638,"journal":{"name":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","volume":"8 1","pages":"43"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognizing multiple objects based on co-occurrence of categories\",\"authors\":\"Takahiro Okabe, Yuhi Kondo, Kris M. Kitani, Yoichi Sato\",\"doi\":\"10.2201/NIIPI.2010.7.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most previous methods for generic object recognition explicitly or implicitly assume that an image contains objects from a single category, although objects from multiple categories often appear together in an image. In this paper, we present a novel method for object recognition that explicitly deals with objects of multiple categories coexisting in an image. Furthermore, our proposed method aims to recognize objects by taking advantage of a scene’s context represented by the co-occurrence relationship between object categories. Specifically, our method estimates the mixture ratios of multiple categories in an image via MAP regression, where the likelihood is computed based on the linear combination model of frequency distributions of local features, and the prior probability is computed from the co-occurrence relation. We conducted a number of experiments using the PASCAL dataset, and obtained the results that lend support to the effectiveness of the proposed method.\",\"PeriodicalId\":91638,\"journal\":{\"name\":\"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing\",\"volume\":\"8 1\",\"pages\":\"43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2201/NIIPI.2010.7.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2201/NIIPI.2010.7.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大多数以前的通用对象识别方法明确或隐含地假设图像包含来自单一类别的对象,尽管来自多个类别的对象经常在图像中一起出现。在本文中,我们提出了一种新的对象识别方法,该方法明确地处理图像中共存的多个类别的对象。此外,我们提出的方法旨在利用由对象类别之间的共现关系表示的场景上下文来识别对象。具体而言,我们的方法通过MAP回归估计图像中多个类别的混合比率,其中基于局部特征频率分布的线性组合模型计算似然,并从共现关系计算先验概率。我们使用PASCAL数据集进行了大量实验,并获得了支持所提出方法有效性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognizing multiple objects based on co-occurrence of categories
Most previous methods for generic object recognition explicitly or implicitly assume that an image contains objects from a single category, although objects from multiple categories often appear together in an image. In this paper, we present a novel method for object recognition that explicitly deals with objects of multiple categories coexisting in an image. Furthermore, our proposed method aims to recognize objects by taking advantage of a scene’s context represented by the co-occurrence relationship between object categories. Specifically, our method estimates the mixture ratios of multiple categories in an image via MAP regression, where the likelihood is computed based on the linear combination model of frequency distributions of local features, and the prior probability is computed from the co-occurrence relation. We conducted a number of experiments using the PASCAL dataset, and obtained the results that lend support to the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信