黑洞和其他具有宇宙常数的二次引力的球形解

V. Pravda, A. Pravdová, J. Podolský, R. Švarc
{"title":"黑洞和其他具有宇宙常数的二次引力的球形解","authors":"V. Pravda, A. Pravdová, J. Podolský, R. Švarc","doi":"10.1103/PHYSREVD.103.064049","DOIUrl":null,"url":null,"abstract":"We study static spherically symmetric solutions to the vacuum field equations of quadratic gravity in the presence of a cosmological constant $\\Lambda$. Motivated by the trace no-hair theorem, we assume the Ricci scalar to be constant throughout a spacetime. Furthermore, we employ the conformal-to-Kundt metric ansatz that is valid for all static spherically symmetric spacetimes and leads to a considerable simplification of the field equations. We arrive at a set of two ordinary differential equations and study its solutions using the Frobenius-like approach of (infinite) power series expansions. While the indicial equations considerably restrict the set of possible leading powers, careful analysis of higher-order terms is necessary to establish the existence of the corresponding classes of solutions. We thus obtain various non-Einstein generalizations of the Schwarzschild, (anti-)de Sitter [or (A)dS for short], Nariai, and Pleba\\'{n}ski-Hacyan spacetimes. Interestingly, some classes of solutions allow for an arbitrary value of $\\Lambda$, while other classes admit only discrete values of $\\Lambda$. For most of these classes, we give recurrent formulas for all series coefficients. We determine which classes contain the Schwarzschild-(A)dS black hole as a special case and briefly discuss the physical interpretation of the spacetimes. In the discussion of physical properties, we naturally focus on the generalization of the Schwarzschild-(A)dS black hole, namely the Schwarzschild-Bach-(A)dS black hole, which possesses one additional Bach parameter. We also study its basic thermodynamical properties and observable effects on test particles caused by the presence of the Bach tensor. This work is a considerable extension of our letter [Phys. Rev. Lett., 121, 231104, 2018].","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Black holes and other spherical solutions in quadratic gravity with a cosmological constant\",\"authors\":\"V. Pravda, A. Pravdová, J. Podolský, R. Švarc\",\"doi\":\"10.1103/PHYSREVD.103.064049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study static spherically symmetric solutions to the vacuum field equations of quadratic gravity in the presence of a cosmological constant $\\\\Lambda$. Motivated by the trace no-hair theorem, we assume the Ricci scalar to be constant throughout a spacetime. Furthermore, we employ the conformal-to-Kundt metric ansatz that is valid for all static spherically symmetric spacetimes and leads to a considerable simplification of the field equations. We arrive at a set of two ordinary differential equations and study its solutions using the Frobenius-like approach of (infinite) power series expansions. While the indicial equations considerably restrict the set of possible leading powers, careful analysis of higher-order terms is necessary to establish the existence of the corresponding classes of solutions. We thus obtain various non-Einstein generalizations of the Schwarzschild, (anti-)de Sitter [or (A)dS for short], Nariai, and Pleba\\\\'{n}ski-Hacyan spacetimes. Interestingly, some classes of solutions allow for an arbitrary value of $\\\\Lambda$, while other classes admit only discrete values of $\\\\Lambda$. For most of these classes, we give recurrent formulas for all series coefficients. We determine which classes contain the Schwarzschild-(A)dS black hole as a special case and briefly discuss the physical interpretation of the spacetimes. In the discussion of physical properties, we naturally focus on the generalization of the Schwarzschild-(A)dS black hole, namely the Schwarzschild-Bach-(A)dS black hole, which possesses one additional Bach parameter. We also study its basic thermodynamical properties and observable effects on test particles caused by the presence of the Bach tensor. This work is a considerable extension of our letter [Phys. Rev. Lett., 121, 231104, 2018].\",\"PeriodicalId\":8455,\"journal\":{\"name\":\"arXiv: General Relativity and Quantum Cosmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: General Relativity and Quantum Cosmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVD.103.064049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.064049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们研究了在宇宙常数$\Lambda$存在下的二次重力真空场方程的静态球对称解。根据迹无毛定理,我们假设里奇标量在整个时空中是恒定的。此外,我们采用了对所有静态球对称时空有效的保形-昆特度量分析,并导致了场方程的相当程度的简化。我们得到一组两个常微分方程,并使用(无限)幂级数展开的类似frobenius的方法研究其解。虽然初始方程在很大程度上限制了可能的幂级数的集合,但要确定相应解类的存在性,就必须仔细分析高阶项。因此,我们得到了Schwarzschild, (anti-)de Sitter[或简称(A)dS], Nariai和Pleba\ {n}ski-Hacyan时空的各种非爱因斯坦推广。有趣的是,某些类的解允许任意值$\Lambda$,而其他类只允许离散值$\Lambda$。对于大多数这类,我们给出了所有级数系数的循环公式。我们确定了哪些类别包含史瓦西-(A)dS黑洞作为一个特例,并简要讨论了时空的物理解释。在物理性质的讨论中,我们自然关注于Schwarzschild-(A)dS黑洞的推广,即Schwarzschild-Bach-(A)dS黑洞,它具有一个额外的Bach参数。我们还研究了它的基本热力学性质以及由于巴赫张量的存在对测试粒子的可观察到的影响。这项工作是我们的信[物理]的一个相当大的延伸。启。[j].农业工程学报,2018,23(11):1107 - 1104。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black holes and other spherical solutions in quadratic gravity with a cosmological constant
We study static spherically symmetric solutions to the vacuum field equations of quadratic gravity in the presence of a cosmological constant $\Lambda$. Motivated by the trace no-hair theorem, we assume the Ricci scalar to be constant throughout a spacetime. Furthermore, we employ the conformal-to-Kundt metric ansatz that is valid for all static spherically symmetric spacetimes and leads to a considerable simplification of the field equations. We arrive at a set of two ordinary differential equations and study its solutions using the Frobenius-like approach of (infinite) power series expansions. While the indicial equations considerably restrict the set of possible leading powers, careful analysis of higher-order terms is necessary to establish the existence of the corresponding classes of solutions. We thus obtain various non-Einstein generalizations of the Schwarzschild, (anti-)de Sitter [or (A)dS for short], Nariai, and Pleba\'{n}ski-Hacyan spacetimes. Interestingly, some classes of solutions allow for an arbitrary value of $\Lambda$, while other classes admit only discrete values of $\Lambda$. For most of these classes, we give recurrent formulas for all series coefficients. We determine which classes contain the Schwarzschild-(A)dS black hole as a special case and briefly discuss the physical interpretation of the spacetimes. In the discussion of physical properties, we naturally focus on the generalization of the Schwarzschild-(A)dS black hole, namely the Schwarzschild-Bach-(A)dS black hole, which possesses one additional Bach parameter. We also study its basic thermodynamical properties and observable effects on test particles caused by the presence of the Bach tensor. This work is a considerable extension of our letter [Phys. Rev. Lett., 121, 231104, 2018].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信