实代数几何中的hartogs型定理,1

IF 1.2 1区 数学 Q1 MATHEMATICS
Marcin Bilski, J. Bochnak, W. Kucharz
{"title":"实代数几何中的hartogs型定理,1","authors":"Marcin Bilski, J. Bochnak, W. Kucharz","doi":"10.1515/crelle-2022-0037","DOIUrl":null,"url":null,"abstract":"Abstract Let f : X → ℝ {f:X\\rightarrow\\mathbb{R}} be a function defined on a connected nonsingular real algebraic set X in ℝ n {\\mathbb{R}^{n}} . We prove that regularity of f can be detected by controlling the restrictions of f to either algebraic curves or algebraic surfaces in X. If dim ⁡ X ≥ 2 {\\operatorname{dim}X\\geq 2} and k is a positive integer, then f is a regular function whenever the restriction f | C {f|_{C}} is a regular function for every algebraic curve C in X that is a 𝒞 k {\\mathcal{C}^{k}} submanifold homeomorphic to the unit circle and is either nonsingular or has precisely one singularity. Moreover, in the latter case, the singularity of C is equivalent to the plane curve singularity defined by the equation x p = y q {x^{p}=y^{q}} for some primes p < q {p<q} . If dim ⁡ X ≥ 3 {\\operatorname{dim}X\\geq 3} , then f is a regular function whenever the restriction f | S {f|_{S}} is a regular function for every nonsingular algebraic surface S in X that is homeomorphic to the unit 2-sphere. We also have suitable versions of these results for X not necessarily connected.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"1 1","pages":"197 - 221"},"PeriodicalIF":1.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hartogs-type theorems in real algebraic geometry, I\",\"authors\":\"Marcin Bilski, J. Bochnak, W. Kucharz\",\"doi\":\"10.1515/crelle-2022-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let f : X → ℝ {f:X\\\\rightarrow\\\\mathbb{R}} be a function defined on a connected nonsingular real algebraic set X in ℝ n {\\\\mathbb{R}^{n}} . We prove that regularity of f can be detected by controlling the restrictions of f to either algebraic curves or algebraic surfaces in X. If dim ⁡ X ≥ 2 {\\\\operatorname{dim}X\\\\geq 2} and k is a positive integer, then f is a regular function whenever the restriction f | C {f|_{C}} is a regular function for every algebraic curve C in X that is a 𝒞 k {\\\\mathcal{C}^{k}} submanifold homeomorphic to the unit circle and is either nonsingular or has precisely one singularity. Moreover, in the latter case, the singularity of C is equivalent to the plane curve singularity defined by the equation x p = y q {x^{p}=y^{q}} for some primes p < q {p<q} . If dim ⁡ X ≥ 3 {\\\\operatorname{dim}X\\\\geq 3} , then f is a regular function whenever the restriction f | S {f|_{S}} is a regular function for every nonsingular algebraic surface S in X that is homeomorphic to the unit 2-sphere. We also have suitable versions of these results for X not necessarily connected.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"1 1\",\"pages\":\"197 - 221\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0037\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0037","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要设f:X→{f:X\rightarrow\mathbb{R}}是定义在连通的非奇异实代数集合X上的函数,该函数定义在一个连通的非奇异实代数集合X上,并定义在∈n {\mathbb{R} ^{n}}上。我们证明了f的正则性可以通过控制f对X中的代数曲线或代数曲面的限制来检测。如果dim (X)≥2 {\operatorname{dim} X \geq 2}且k是正整数,则只要限制f| C f|{_C{是X中与单位圆同态的 k }}{\mathcal{C} ^{k}}子流形的每一个代数曲线C的正则函数,且该曲线非奇异或恰好有一个奇异,f就是正则函数。在后一种情况下,对于{某些素数p本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Hartogs-type theorems in real algebraic geometry, I
Abstract Let f : X → ℝ {f:X\rightarrow\mathbb{R}} be a function defined on a connected nonsingular real algebraic set X in ℝ n {\mathbb{R}^{n}} . We prove that regularity of f can be detected by controlling the restrictions of f to either algebraic curves or algebraic surfaces in X. If dim ⁡ X ≥ 2 {\operatorname{dim}X\geq 2} and k is a positive integer, then f is a regular function whenever the restriction f | C {f|_{C}} is a regular function for every algebraic curve C in X that is a 𝒞 k {\mathcal{C}^{k}} submanifold homeomorphic to the unit circle and is either nonsingular or has precisely one singularity. Moreover, in the latter case, the singularity of C is equivalent to the plane curve singularity defined by the equation x p = y q {x^{p}=y^{q}} for some primes p < q {p
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信