平面性和希普利代数定理

J. Williamson
{"title":"平面性和希普利代数定理","authors":"J. Williamson","doi":"10.4310/hha.2021.v23.n1.a11","DOIUrl":null,"url":null,"abstract":"We provide an enhancement of Shipley's algebraicization theorem which behaves better in the context of commutative algebras. This involves defining flat model structures as in Shipley and Pavlov-Scholbach, and showing that the functors still provide Quillen equivalences in this refined context. The use of flat model structures allows one to identify the algebraic counterparts of change of groups functors, as demonstrated in forthcoming work of the author.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Flatness and Shipley’s algebraicization theorem\",\"authors\":\"J. Williamson\",\"doi\":\"10.4310/hha.2021.v23.n1.a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide an enhancement of Shipley's algebraicization theorem which behaves better in the context of commutative algebras. This involves defining flat model structures as in Shipley and Pavlov-Scholbach, and showing that the functors still provide Quillen equivalences in this refined context. The use of flat model structures allows one to identify the algebraic counterparts of change of groups functors, as demonstrated in forthcoming work of the author.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2021.v23.n1.a11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/hha.2021.v23.n1.a11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文对Shipley代数化定理作了一个改进,该定理在交换代数中表现得更好。这包括像Shipley和Pavlov-Scholbach那样定义平面模型结构,并表明函子在这种精细的上下文中仍然提供Quillen等价。平面模型结构的使用允许人们识别群函子变化的代数对应物,如作者即将开展的工作所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flatness and Shipley’s algebraicization theorem
We provide an enhancement of Shipley's algebraicization theorem which behaves better in the context of commutative algebras. This involves defining flat model structures as in Shipley and Pavlov-Scholbach, and showing that the functors still provide Quillen equivalences in this refined context. The use of flat model structures allows one to identify the algebraic counterparts of change of groups functors, as demonstrated in forthcoming work of the author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信