弱最优性,和共享的意义

Thibaut Balabonski
{"title":"弱最优性,和共享的意义","authors":"Thibaut Balabonski","doi":"10.1145/2500365.2500606","DOIUrl":null,"url":null,"abstract":"In this paper we investigate laziness and optimal evaluation strategies for functional programming languages. We consider the weak lambda-calculus as a basis of functional programming languages, and we adapt to this setting the concepts of optimal reductions that were defined for the full lambda-calculus. We prove that the usual implementation of call-by-need using sharing is optimal, that is, normalizing any lambda-term with call-by-need requires exactly the same number of reduction steps as the shortest reduction sequence in the weak lambda-calculus without sharing. Furthermore, we prove that optimal reduction sequences without sharing are not computable. Hence sharing is the only computable means to reach weak optimality.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Weak optimality, and the meaning of sharing\",\"authors\":\"Thibaut Balabonski\",\"doi\":\"10.1145/2500365.2500606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate laziness and optimal evaluation strategies for functional programming languages. We consider the weak lambda-calculus as a basis of functional programming languages, and we adapt to this setting the concepts of optimal reductions that were defined for the full lambda-calculus. We prove that the usual implementation of call-by-need using sharing is optimal, that is, normalizing any lambda-term with call-by-need requires exactly the same number of reduction steps as the shortest reduction sequence in the weak lambda-calculus without sharing. Furthermore, we prove that optimal reduction sequences without sharing are not computable. Hence sharing is the only computable means to reach weak optimality.\",\"PeriodicalId\":20504,\"journal\":{\"name\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2500365.2500606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2500365.2500606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文研究了函数式编程语言的惰性和最优求值策略。我们认为弱λ演算是函数式编程语言的基础,并且我们适应了为完整λ演算定义的最优约简的概念。我们证明了使用共享的按需调用的通常实现是最优的,即使用按需调用规范化任何lambda项所需的约简步数与不共享的弱lambda演算中的最短约简序列完全相同。进一步证明了没有共享的最优约简序列是不可计算的。因此,共享是达到弱最优性的唯一可计算手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak optimality, and the meaning of sharing
In this paper we investigate laziness and optimal evaluation strategies for functional programming languages. We consider the weak lambda-calculus as a basis of functional programming languages, and we adapt to this setting the concepts of optimal reductions that were defined for the full lambda-calculus. We prove that the usual implementation of call-by-need using sharing is optimal, that is, normalizing any lambda-term with call-by-need requires exactly the same number of reduction steps as the shortest reduction sequence in the weak lambda-calculus without sharing. Furthermore, we prove that optimal reduction sequences without sharing are not computable. Hence sharing is the only computable means to reach weak optimality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信