可组合和通用的隐私通过截断CDP

Mark Bun, C. Dwork, G. Rothblum, T. Steinke
{"title":"可组合和通用的隐私通过截断CDP","authors":"Mark Bun, C. Dwork, G. Rothblum, T. Steinke","doi":"10.1145/3188745.3188946","DOIUrl":null,"url":null,"abstract":"We propose truncated concentrated differential privacy (tCDP), a refinement of differential privacy and of concentrated differential privacy. This new definition provides robust and efficient composition guarantees, supports powerful algorithmic techniques such as privacy amplification via sub-sampling, and enables more accurate statistical analyses. In particular, we show a central task for which the new definition enables exponential accuracy improvement.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":"{\"title\":\"Composable and versatile privacy via truncated CDP\",\"authors\":\"Mark Bun, C. Dwork, G. Rothblum, T. Steinke\",\"doi\":\"10.1145/3188745.3188946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose truncated concentrated differential privacy (tCDP), a refinement of differential privacy and of concentrated differential privacy. This new definition provides robust and efficient composition guarantees, supports powerful algorithmic techniques such as privacy amplification via sub-sampling, and enables more accurate statistical analyses. In particular, we show a central task for which the new definition enables exponential accuracy improvement.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"138\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 138

摘要

我们提出了截断集中差分隐私(tCDP),它是差分隐私和集中差分隐私的一种改进。这个新定义提供了健壮和高效的组成保证,支持强大的算法技术,如通过子采样进行隐私放大,并实现更准确的统计分析。特别是,我们展示了一个中心任务,新定义使指数精度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composable and versatile privacy via truncated CDP
We propose truncated concentrated differential privacy (tCDP), a refinement of differential privacy and of concentrated differential privacy. This new definition provides robust and efficient composition guarantees, supports powerful algorithmic techniques such as privacy amplification via sub-sampling, and enables more accurate statistical analyses. In particular, we show a central task for which the new definition enables exponential accuracy improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信