用于场景文本识别的遮罩视觉语言转换器

Jie Wu, Ying Peng, Shenmin Zhang, Weigang Qi, Jian Zhang
{"title":"用于场景文本识别的遮罩视觉语言转换器","authors":"Jie Wu, Ying Peng, Shenmin Zhang, Weigang Qi, Jian Zhang","doi":"10.48550/arXiv.2211.04785","DOIUrl":null,"url":null,"abstract":"Scene text recognition (STR) enables computers to recognize and read the text in various real-world scenes. Recent STR models benefit from taking linguistic information in addition to visual cues into consideration. We propose a novel Masked Vision-Language Transformers (MVLT) to capture both the explicit and the implicit linguistic information. Our encoder is a Vision Transformer, and our decoder is a multi-modal Transformer. MVLT is trained in two stages: in the first stage, we design a STR-tailored pretraining method based on a masking strategy; in the second stage, we fine-tune our model and adopt an iterative correction method to improve the performance. MVLT attains superior results compared to state-of-the-art STR models on several benchmarks. Our code and model are available at https://github.com/onealwj/MVLT.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"78 11 1","pages":"555"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Masked Vision-Language Transformers for Scene Text Recognition\",\"authors\":\"Jie Wu, Ying Peng, Shenmin Zhang, Weigang Qi, Jian Zhang\",\"doi\":\"10.48550/arXiv.2211.04785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scene text recognition (STR) enables computers to recognize and read the text in various real-world scenes. Recent STR models benefit from taking linguistic information in addition to visual cues into consideration. We propose a novel Masked Vision-Language Transformers (MVLT) to capture both the explicit and the implicit linguistic information. Our encoder is a Vision Transformer, and our decoder is a multi-modal Transformer. MVLT is trained in two stages: in the first stage, we design a STR-tailored pretraining method based on a masking strategy; in the second stage, we fine-tune our model and adopt an iterative correction method to improve the performance. MVLT attains superior results compared to state-of-the-art STR models on several benchmarks. Our code and model are available at https://github.com/onealwj/MVLT.\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"78 11 1\",\"pages\":\"555\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.04785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.04785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

场景文本识别(STR)使计算机能够识别和读取各种现实世界场景中的文本。最近的STR模型除了考虑视觉线索外,还考虑了语言信息。我们提出了一种新的蒙面视觉语言变形器(MVLT)来捕获显性和隐性语言信息。我们的编码器是一个视觉变压器,我们的解码器是一个多模态变压器。MVLT的训练分为两个阶段:第一阶段,我们设计了基于掩蔽策略的str定制预训练方法;在第二阶段,我们对模型进行微调,并采用迭代修正方法来提高性能。在几个基准测试中,与最先进的STR模型相比,MVLT获得了更好的结果。我们的代码和模型可在https://github.com/onealwj/MVLT上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Masked Vision-Language Transformers for Scene Text Recognition
Scene text recognition (STR) enables computers to recognize and read the text in various real-world scenes. Recent STR models benefit from taking linguistic information in addition to visual cues into consideration. We propose a novel Masked Vision-Language Transformers (MVLT) to capture both the explicit and the implicit linguistic information. Our encoder is a Vision Transformer, and our decoder is a multi-modal Transformer. MVLT is trained in two stages: in the first stage, we design a STR-tailored pretraining method based on a masking strategy; in the second stage, we fine-tune our model and adopt an iterative correction method to improve the performance. MVLT attains superior results compared to state-of-the-art STR models on several benchmarks. Our code and model are available at https://github.com/onealwj/MVLT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信