基于负向多任务学习的公平和选择性隐私保护模型(学生摘要)

Liyuan Gao, Huixin Zhan, Austin Chen, Victor S. Sheng
{"title":"基于负向多任务学习的公平和选择性隐私保护模型(学生摘要)","authors":"Liyuan Gao, Huixin Zhan, Austin Chen, Victor S. Sheng","doi":"10.1609/aaai.v37i13.26967","DOIUrl":null,"url":null,"abstract":"Deep learning models have shown great performances in natural language processing tasks. While much attention has been paid to improvements in utility, privacy leakage and social bias are two major concerns arising in trained models. In order to tackle these problems, we protect individuals' sensitive information and mitigate gender bias simultaneously. First, we propose a selective privacy-preserving method that only obscures individuals' sensitive information. Then we propose a negative multi-task learning framework to mitigate the gender bias which contains a main task and a gender prediction task. We analyze two existing word embeddings and evaluate them on sentiment analysis and a medical text classification task. Our experimental results show that our negative multi-task learning framework can mitigate the gender bias while keeping models’ utility.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"21 2 1","pages":"16214-16215"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Fair and Selectively Privacy-Preserving Models Using Negative Multi-Task Learning (Student Abstract)\",\"authors\":\"Liyuan Gao, Huixin Zhan, Austin Chen, Victor S. Sheng\",\"doi\":\"10.1609/aaai.v37i13.26967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models have shown great performances in natural language processing tasks. While much attention has been paid to improvements in utility, privacy leakage and social bias are two major concerns arising in trained models. In order to tackle these problems, we protect individuals' sensitive information and mitigate gender bias simultaneously. First, we propose a selective privacy-preserving method that only obscures individuals' sensitive information. Then we propose a negative multi-task learning framework to mitigate the gender bias which contains a main task and a gender prediction task. We analyze two existing word embeddings and evaluate them on sentiment analysis and a medical text classification task. Our experimental results show that our negative multi-task learning framework can mitigate the gender bias while keeping models’ utility.\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"21 2 1\",\"pages\":\"16214-16215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i13.26967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i13.26967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习模型在自然语言处理任务中表现出色。虽然人们对效用的改进给予了很多关注,但隐私泄露和社会偏见是训练模型中出现的两个主要问题。为了解决这些问题,我们在保护个人敏感信息的同时减少性别偏见。首先,我们提出了一种仅模糊个人敏感信息的选择性隐私保护方法。在此基础上,我们提出了一个包含主任务和性别预测任务的负向多任务学习框架来缓解性别偏见。我们分析了两个现有的词嵌入,并在情感分析和医学文本分类任务上对它们进行了评价。实验结果表明,负向多任务学习框架可以在保持模型效用的同时减轻性别偏见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Fair and Selectively Privacy-Preserving Models Using Negative Multi-Task Learning (Student Abstract)
Deep learning models have shown great performances in natural language processing tasks. While much attention has been paid to improvements in utility, privacy leakage and social bias are two major concerns arising in trained models. In order to tackle these problems, we protect individuals' sensitive information and mitigate gender bias simultaneously. First, we propose a selective privacy-preserving method that only obscures individuals' sensitive information. Then we propose a negative multi-task learning framework to mitigate the gender bias which contains a main task and a gender prediction task. We analyze two existing word embeddings and evaluate them on sentiment analysis and a medical text classification task. Our experimental results show that our negative multi-task learning framework can mitigate the gender bias while keeping models’ utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信