Fang Gao, Zhangqin Huang, Shulong Wang, Xinrong Ji
{"title":"基于多核处理器的嵌入式系统多层感知机前馈加速框架","authors":"Fang Gao, Zhangqin Huang, Shulong Wang, Xinrong Ji","doi":"10.1109/ICISCE.2016.21","DOIUrl":null,"url":null,"abstract":"Because of the complex architecture and multiple iterations algorithm, neural network is sometimes hard for traditional embedded devices to meet the needs of real-time processing speed in large scale data applications. Manycore processors are directly applicable for parallel implementation of the neural network. In this paper we present a multilayer perception feed forward acceleration framework based on power efficiency manycore processor, including network mapping strategy, data structure design and inter-core communication method. The framework is implemented on a Zynq and Epiphany combined hardware platform with OpenCL. The experimental results show that in a concrete example of character recognition, the framework with Epiphany achieves about four times feed forward acceleration than the dual-core ARM in Zynq with same prediction accuracy level.","PeriodicalId":6882,"journal":{"name":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","volume":"7 1","pages":"49-53"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Manycore Processor Based Multilayer Perceptron Feedforward Acceleration Framework for Embedded System\",\"authors\":\"Fang Gao, Zhangqin Huang, Shulong Wang, Xinrong Ji\",\"doi\":\"10.1109/ICISCE.2016.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of the complex architecture and multiple iterations algorithm, neural network is sometimes hard for traditional embedded devices to meet the needs of real-time processing speed in large scale data applications. Manycore processors are directly applicable for parallel implementation of the neural network. In this paper we present a multilayer perception feed forward acceleration framework based on power efficiency manycore processor, including network mapping strategy, data structure design and inter-core communication method. The framework is implemented on a Zynq and Epiphany combined hardware platform with OpenCL. The experimental results show that in a concrete example of character recognition, the framework with Epiphany achieves about four times feed forward acceleration than the dual-core ARM in Zynq with same prediction accuracy level.\",\"PeriodicalId\":6882,\"journal\":{\"name\":\"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)\",\"volume\":\"7 1\",\"pages\":\"49-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCE.2016.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCE.2016.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Manycore Processor Based Multilayer Perceptron Feedforward Acceleration Framework for Embedded System
Because of the complex architecture and multiple iterations algorithm, neural network is sometimes hard for traditional embedded devices to meet the needs of real-time processing speed in large scale data applications. Manycore processors are directly applicable for parallel implementation of the neural network. In this paper we present a multilayer perception feed forward acceleration framework based on power efficiency manycore processor, including network mapping strategy, data structure design and inter-core communication method. The framework is implemented on a Zynq and Epiphany combined hardware platform with OpenCL. The experimental results show that in a concrete example of character recognition, the framework with Epiphany achieves about four times feed forward acceleration than the dual-core ARM in Zynq with same prediction accuracy level.