Stephen Devlin, T. Treloar, Molly Creagar, S. Cassels
{"title":"一种迭代马尔可夫评级方法","authors":"Stephen Devlin, T. Treloar, Molly Creagar, S. Cassels","doi":"10.1515/jqas-2019-0070","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a simple and natural iterative version of the well-known and widely studied Markov rating method. We show that this iterative Markov method converges to the usual global Markov rating, and shares a close relationship with the well-known Elo rating. Together with recent results on the relationship between the global Markov method and the maximum likelihood estimate of the rating vector in the Bradley–Terry (BT) model, we connect and explore the global and iterative Markov, Elo, and Bradley–Terry ratings on real and simulated data.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"25 1","pages":"117 - 127"},"PeriodicalIF":1.1000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An iterative Markov rating method\",\"authors\":\"Stephen Devlin, T. Treloar, Molly Creagar, S. Cassels\",\"doi\":\"10.1515/jqas-2019-0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce a simple and natural iterative version of the well-known and widely studied Markov rating method. We show that this iterative Markov method converges to the usual global Markov rating, and shares a close relationship with the well-known Elo rating. Together with recent results on the relationship between the global Markov method and the maximum likelihood estimate of the rating vector in the Bradley–Terry (BT) model, we connect and explore the global and iterative Markov, Elo, and Bradley–Terry ratings on real and simulated data.\",\"PeriodicalId\":16925,\"journal\":{\"name\":\"Journal of Quantitative Analysis in Sports\",\"volume\":\"25 1\",\"pages\":\"117 - 127\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Analysis in Sports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jqas-2019-0070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2019-0070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Abstract We introduce a simple and natural iterative version of the well-known and widely studied Markov rating method. We show that this iterative Markov method converges to the usual global Markov rating, and shares a close relationship with the well-known Elo rating. Together with recent results on the relationship between the global Markov method and the maximum likelihood estimate of the rating vector in the Bradley–Terry (BT) model, we connect and explore the global and iterative Markov, Elo, and Bradley–Terry ratings on real and simulated data.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.