利用无人机和卫星多光谱图像、地形指标、叶面积指数、植物高度、土壤湿度和机器学习方法估算小麦氮素

Nitrogen Pub Date : 2021-12-23 DOI:10.3390/nitrogen3010001
Jody Yu, Jinfei Wang, B. Leblon, Yang Song
{"title":"利用无人机和卫星多光谱图像、地形指标、叶面积指数、植物高度、土壤湿度和机器学习方法估算小麦氮素","authors":"Jody Yu, Jinfei Wang, B. Leblon, Yang Song","doi":"10.3390/nitrogen3010001","DOIUrl":null,"url":null,"abstract":"To improve productivity, reduce production costs, and minimize the environmental impacts of agriculture, the advancement of nitrogen (N) fertilizer management methods is needed. The objective of this study is to compare the use of Unmanned Aerial Vehicle (UAV) multispectral imagery and PlanetScope satellite imagery, together with plant height, leaf area index (LAI), soil moisture, and field topographic metrics to predict the canopy nitrogen weight (g/m2) of wheat fields in southwestern Ontario, Canada. Random Forests (RF) and support vector regression (SVR) models, applied to either UAV imagery or satellite imagery, were evaluated for canopy nitrogen weight prediction. The top-performing UAV imagery-based validation model used SVR with seven selected variables (plant height, LAI, four VIs, and the NIR band) with an R2 of 0.80 and an RMSE of 2.62 g/m2. The best satellite imagery-based validation model was RF, which used 17 variables including plant height, LAI, the four PlanetScope bands, and 11 VIs, resulting in an R2 of 0.92 and an RMSE of 1.75 g/m2. The model information can be used to improve field nitrogen predictions for the effective management of N fertilizer.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Nitrogen Estimation for Wheat Using UAV-Based and Satellite Multispectral Imagery, Topographic Metrics, Leaf Area Index, Plant Height, Soil Moisture, and Machine Learning Methods\",\"authors\":\"Jody Yu, Jinfei Wang, B. Leblon, Yang Song\",\"doi\":\"10.3390/nitrogen3010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve productivity, reduce production costs, and minimize the environmental impacts of agriculture, the advancement of nitrogen (N) fertilizer management methods is needed. The objective of this study is to compare the use of Unmanned Aerial Vehicle (UAV) multispectral imagery and PlanetScope satellite imagery, together with plant height, leaf area index (LAI), soil moisture, and field topographic metrics to predict the canopy nitrogen weight (g/m2) of wheat fields in southwestern Ontario, Canada. Random Forests (RF) and support vector regression (SVR) models, applied to either UAV imagery or satellite imagery, were evaluated for canopy nitrogen weight prediction. The top-performing UAV imagery-based validation model used SVR with seven selected variables (plant height, LAI, four VIs, and the NIR band) with an R2 of 0.80 and an RMSE of 2.62 g/m2. The best satellite imagery-based validation model was RF, which used 17 variables including plant height, LAI, the four PlanetScope bands, and 11 VIs, resulting in an R2 of 0.92 and an RMSE of 1.75 g/m2. The model information can be used to improve field nitrogen predictions for the effective management of N fertilizer.\",\"PeriodicalId\":19365,\"journal\":{\"name\":\"Nitrogen\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nitrogen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/nitrogen3010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitrogen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nitrogen3010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了提高生产力,降低生产成本,最大限度地减少农业对环境的影响,需要改进氮肥管理方法。本研究的目的是比较使用无人机(UAV)多光谱图像和PlanetScope卫星图像,结合植物高度、叶面积指数(LAI)、土壤湿度和田地地形指标来预测加拿大安大略省西南部麦田的冠层氮重(g/m2)。采用随机森林(RF)和支持向量回归(SVR)模型分别对无人机图像和卫星图像进行了冠层氮重预测。基于无人机图像的验证模型采用SVR,选择7个变量(植物高度、LAI、4个VIs和近红外波段),R2为0.80,RMSE为2.62 g/m2。基于卫星影像的验证模型以RF为最佳,该模型使用了植物高度、LAI、4个PlanetScope波段和11个VIs等17个变量,R2为0.92,RMSE为1.75 g/m2。模型信息可用于改进田间氮素预测,为氮肥的有效管理提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nitrogen Estimation for Wheat Using UAV-Based and Satellite Multispectral Imagery, Topographic Metrics, Leaf Area Index, Plant Height, Soil Moisture, and Machine Learning Methods
To improve productivity, reduce production costs, and minimize the environmental impacts of agriculture, the advancement of nitrogen (N) fertilizer management methods is needed. The objective of this study is to compare the use of Unmanned Aerial Vehicle (UAV) multispectral imagery and PlanetScope satellite imagery, together with plant height, leaf area index (LAI), soil moisture, and field topographic metrics to predict the canopy nitrogen weight (g/m2) of wheat fields in southwestern Ontario, Canada. Random Forests (RF) and support vector regression (SVR) models, applied to either UAV imagery or satellite imagery, were evaluated for canopy nitrogen weight prediction. The top-performing UAV imagery-based validation model used SVR with seven selected variables (plant height, LAI, four VIs, and the NIR band) with an R2 of 0.80 and an RMSE of 2.62 g/m2. The best satellite imagery-based validation model was RF, which used 17 variables including plant height, LAI, the four PlanetScope bands, and 11 VIs, resulting in an R2 of 0.92 and an RMSE of 1.75 g/m2. The model information can be used to improve field nitrogen predictions for the effective management of N fertilizer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信