理解p-拉普拉斯诺依曼边值问题非常解的准则

Kanako Suzuki
{"title":"理解p-拉普拉斯诺依曼边值问题非常解的准则","authors":"Kanako Suzuki","doi":"10.5036/mjiu.52.1","DOIUrl":null,"url":null,"abstract":"We consider a p-Laplace equation ∆pV + h(V ) = 0, with an arbitrary C-nonlinearity h, in a bounded domain and supplemented with the Neumann boundary condition. We prove a necessary condition for zeros of h = h(V ) to be touched by non-constant solutions to this problem.","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"20 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Criterion toward understanding non-constant solutions to p-Laplace Neumann boundary value problem\",\"authors\":\"Kanako Suzuki\",\"doi\":\"10.5036/mjiu.52.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a p-Laplace equation ∆pV + h(V ) = 0, with an arbitrary C-nonlinearity h, in a bounded domain and supplemented with the Neumann boundary condition. We prove a necessary condition for zeros of h = h(V ) to be touched by non-constant solutions to this problem.\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"20 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/mjiu.52.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/mjiu.52.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个p-拉普拉斯方程∆pV + h(V) = 0,具有任意c -非线性h,在有界域中,并辅以Neumann边界条件。证明了该问题的非常解触及h = h(V)的零点的一个必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Criterion toward understanding non-constant solutions to p-Laplace Neumann boundary value problem
We consider a p-Laplace equation ∆pV + h(V ) = 0, with an arbitrary C-nonlinearity h, in a bounded domain and supplemented with the Neumann boundary condition. We prove a necessary condition for zeros of h = h(V ) to be touched by non-constant solutions to this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信