{"title":"理解p-拉普拉斯诺依曼边值问题非常解的准则","authors":"Kanako Suzuki","doi":"10.5036/mjiu.52.1","DOIUrl":null,"url":null,"abstract":"We consider a p-Laplace equation ∆pV + h(V ) = 0, with an arbitrary C-nonlinearity h, in a bounded domain and supplemented with the Neumann boundary condition. We prove a necessary condition for zeros of h = h(V ) to be touched by non-constant solutions to this problem.","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"20 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Criterion toward understanding non-constant solutions to p-Laplace Neumann boundary value problem\",\"authors\":\"Kanako Suzuki\",\"doi\":\"10.5036/mjiu.52.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a p-Laplace equation ∆pV + h(V ) = 0, with an arbitrary C-nonlinearity h, in a bounded domain and supplemented with the Neumann boundary condition. We prove a necessary condition for zeros of h = h(V ) to be touched by non-constant solutions to this problem.\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"20 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/mjiu.52.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/mjiu.52.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Criterion toward understanding non-constant solutions to p-Laplace Neumann boundary value problem
We consider a p-Laplace equation ∆pV + h(V ) = 0, with an arbitrary C-nonlinearity h, in a bounded domain and supplemented with the Neumann boundary condition. We prove a necessary condition for zeros of h = h(V ) to be touched by non-constant solutions to this problem.