综合安全高效的包处理内核扩展

Qiongwen Xu, Michael D. Wong, Tanvi Wagle, S. Narayana, Anirudh Sivaraman
{"title":"综合安全高效的包处理内核扩展","authors":"Qiongwen Xu, Michael D. Wong, Tanvi Wagle, S. Narayana, Anirudh Sivaraman","doi":"10.1145/3452296.3472929","DOIUrl":null,"url":null,"abstract":"Extended Berkeley Packet Filter (BPF) has emerged as a powerful method to extend packet-processing functionality in the Linux operating system. BPF allows users to write code in high-level languages (like C or Rust) and execute them at specific hooks in the kernel, such as the network device driver. To ensure safe execution of a user-developed BPF program in kernel context, Linux uses an in-kernel static checker. The checker allows a program to execute only if it can prove that the program is crash-free, always accesses memory within safe bounds, and avoids leaking kernel data. BPF programming is not easy. One, even modest-sized BPF programs are deemed too large to analyze and rejected by the kernel checker. Two, the kernel checker may incorrectly determine that a BPF program exhibits unsafe behaviors. Three, even small performance optimizations to BPF code (e.g., 5% gains) must be meticulously hand-crafted by expert developers. Traditional optimizing compilers for BPF are often inadequate since the kernel checker's safety constraints are incompatible with rule-based optimizations. We present K2, a program-synthesis-based compiler that automatically optimizes BPF bytecode with formal correctness and safety guarantees. K2 produces code with 6--26% reduced size, 1.36%--55.03% lower average packet-processing latency, and 0--4.75% higher throughput (packets per second per core) relative to the best clang-compiled program, across benchmarks drawn from Cilium, Facebook, and the Linux kernel. K2 incorporates several domain-specific techniques to make synthesis practical by accelerating equivalence-checking of BPF programs by 6 orders of magnitude.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Synthesizing safe and efficient kernel extensions for packet processing\",\"authors\":\"Qiongwen Xu, Michael D. Wong, Tanvi Wagle, S. Narayana, Anirudh Sivaraman\",\"doi\":\"10.1145/3452296.3472929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended Berkeley Packet Filter (BPF) has emerged as a powerful method to extend packet-processing functionality in the Linux operating system. BPF allows users to write code in high-level languages (like C or Rust) and execute them at specific hooks in the kernel, such as the network device driver. To ensure safe execution of a user-developed BPF program in kernel context, Linux uses an in-kernel static checker. The checker allows a program to execute only if it can prove that the program is crash-free, always accesses memory within safe bounds, and avoids leaking kernel data. BPF programming is not easy. One, even modest-sized BPF programs are deemed too large to analyze and rejected by the kernel checker. Two, the kernel checker may incorrectly determine that a BPF program exhibits unsafe behaviors. Three, even small performance optimizations to BPF code (e.g., 5% gains) must be meticulously hand-crafted by expert developers. Traditional optimizing compilers for BPF are often inadequate since the kernel checker's safety constraints are incompatible with rule-based optimizations. We present K2, a program-synthesis-based compiler that automatically optimizes BPF bytecode with formal correctness and safety guarantees. K2 produces code with 6--26% reduced size, 1.36%--55.03% lower average packet-processing latency, and 0--4.75% higher throughput (packets per second per core) relative to the best clang-compiled program, across benchmarks drawn from Cilium, Facebook, and the Linux kernel. K2 incorporates several domain-specific techniques to make synthesis practical by accelerating equivalence-checking of BPF programs by 6 orders of magnitude.\",\"PeriodicalId\":20487,\"journal\":{\"name\":\"Proceedings of the 2021 ACM SIGCOMM 2021 Conference\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM SIGCOMM 2021 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3452296.3472929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452296.3472929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

扩展伯克利包过滤器(BPF)已经成为Linux操作系统中扩展包处理功能的一种强大方法。BPF允许用户用高级语言(如C或Rust)编写代码,并在内核中的特定钩子(如网络设备驱动程序)上执行它们。为了确保在内核上下文中安全执行用户开发的BPF程序,Linux使用内核内静态检查器。只有当检查器能够证明程序没有崩溃,总是在安全范围内访问内存,并避免泄漏内核数据时,检查器才允许程序执行。BPF编程并不容易。首先,即使是中等规模的BPF程序也会被认为太大而无法分析,从而被内核检查器拒绝。第二,内核检查器可能错误地确定BPF程序显示不安全的行为。第三,即使是对BPF代码进行很小的性能优化(例如,5%的增益),也必须由专业开发人员精心手工设计。由于内核检查器的安全约束与基于规则的优化不兼容,传统的BPF优化编译器通常是不够的。我们提出了K2,一个基于程序合成的编译器,可以自动优化BPF字节码,并提供形式正确性和安全性保证。在Cilium、Facebook和Linux内核的基准测试中,与最佳的clang编译程序相比,K2生成的代码大小减少了6—26%,平均数据包处理延迟降低了1.36%—55.03%,吞吐量(每核每秒数据包数)提高了0—4.75%。K2结合了几种特定领域的技术,通过加速BPF程序的6个数量级的等效检查,使合成实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesizing safe and efficient kernel extensions for packet processing
Extended Berkeley Packet Filter (BPF) has emerged as a powerful method to extend packet-processing functionality in the Linux operating system. BPF allows users to write code in high-level languages (like C or Rust) and execute them at specific hooks in the kernel, such as the network device driver. To ensure safe execution of a user-developed BPF program in kernel context, Linux uses an in-kernel static checker. The checker allows a program to execute only if it can prove that the program is crash-free, always accesses memory within safe bounds, and avoids leaking kernel data. BPF programming is not easy. One, even modest-sized BPF programs are deemed too large to analyze and rejected by the kernel checker. Two, the kernel checker may incorrectly determine that a BPF program exhibits unsafe behaviors. Three, even small performance optimizations to BPF code (e.g., 5% gains) must be meticulously hand-crafted by expert developers. Traditional optimizing compilers for BPF are often inadequate since the kernel checker's safety constraints are incompatible with rule-based optimizations. We present K2, a program-synthesis-based compiler that automatically optimizes BPF bytecode with formal correctness and safety guarantees. K2 produces code with 6--26% reduced size, 1.36%--55.03% lower average packet-processing latency, and 0--4.75% higher throughput (packets per second per core) relative to the best clang-compiled program, across benchmarks drawn from Cilium, Facebook, and the Linux kernel. K2 incorporates several domain-specific techniques to make synthesis practical by accelerating equivalence-checking of BPF programs by 6 orders of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信