空间相关平坦衰落MIMO信道估计的最优训练序列

H. Nooralizadeh, S. Moghaddam, H. Bakhshi
{"title":"空间相关平坦衰落MIMO信道估计的最优训练序列","authors":"H. Nooralizadeh, S. Moghaddam, H. Bakhshi","doi":"10.1109/ISIEA.2009.5356470","DOIUrl":null,"url":null,"abstract":"In this article, we deal with the Training-Based Channel Estimation (TBCE) scheme in the spatially correlated Rician flat fading Multiple-Input Multiple-Output (MIMO) channels. The performance of the Least Squares (LS) and Linear Minimum Mean Square Error (LMMSE) estimators is investigated. Moreover, optimal training signals in the Minimum Mean Square Error (MMSE) sense are achieved. It is shown that the traditional LS estimator cannot exploit the knowledge of the first and second-order statistics about the Rician fading MIMO channel. However, the LMMSE estimator uses the knowledge of spatial correlation. Furthermore, when the Rice factor increases, the Mean Square Error (MSE) of this estimator significantly decreases. Theoretical analysis and simulation results show that the performance of the LMMSE estimator in the Rician model compared with Rayleigh one is much better.","PeriodicalId":6447,"journal":{"name":"2009 IEEE Symposium on Industrial Electronics & Applications","volume":"118 1","pages":"227-232"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimal training sequences in MIMO channel estimation with spatially correlated Rician flat fading\",\"authors\":\"H. Nooralizadeh, S. Moghaddam, H. Bakhshi\",\"doi\":\"10.1109/ISIEA.2009.5356470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we deal with the Training-Based Channel Estimation (TBCE) scheme in the spatially correlated Rician flat fading Multiple-Input Multiple-Output (MIMO) channels. The performance of the Least Squares (LS) and Linear Minimum Mean Square Error (LMMSE) estimators is investigated. Moreover, optimal training signals in the Minimum Mean Square Error (MMSE) sense are achieved. It is shown that the traditional LS estimator cannot exploit the knowledge of the first and second-order statistics about the Rician fading MIMO channel. However, the LMMSE estimator uses the knowledge of spatial correlation. Furthermore, when the Rice factor increases, the Mean Square Error (MSE) of this estimator significantly decreases. Theoretical analysis and simulation results show that the performance of the LMMSE estimator in the Rician model compared with Rayleigh one is much better.\",\"PeriodicalId\":6447,\"journal\":{\"name\":\"2009 IEEE Symposium on Industrial Electronics & Applications\",\"volume\":\"118 1\",\"pages\":\"227-232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Industrial Electronics & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIEA.2009.5356470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Industrial Electronics & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA.2009.5356470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了空间相关平坦衰落多输入多输出(MIMO)信道中基于训练的信道估计(TBCE)方案。研究了最小二乘估计器和线性最小均方误差估计器的性能。此外,在最小均方误差(MMSE)意义上实现了最优训练信号。研究表明,传统的最小二乘估计不能充分利用MIMO信道一阶和二阶统计量的知识。然而,LMMSE估计器使用了空间相关的知识。此外,当Rice因子增加时,该估计器的均方误差(MSE)显著降低。理论分析和仿真结果表明,与Rayleigh模型相比,LMMSE估计器在fourier模型中的性能要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal training sequences in MIMO channel estimation with spatially correlated Rician flat fading
In this article, we deal with the Training-Based Channel Estimation (TBCE) scheme in the spatially correlated Rician flat fading Multiple-Input Multiple-Output (MIMO) channels. The performance of the Least Squares (LS) and Linear Minimum Mean Square Error (LMMSE) estimators is investigated. Moreover, optimal training signals in the Minimum Mean Square Error (MMSE) sense are achieved. It is shown that the traditional LS estimator cannot exploit the knowledge of the first and second-order statistics about the Rician fading MIMO channel. However, the LMMSE estimator uses the knowledge of spatial correlation. Furthermore, when the Rice factor increases, the Mean Square Error (MSE) of this estimator significantly decreases. Theoretical analysis and simulation results show that the performance of the LMMSE estimator in the Rician model compared with Rayleigh one is much better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信