图的距离拉普拉斯特征值和

IF 0.7 Q2 MATHEMATICS
S. Pirzada, Saleem Khan
{"title":"图的距离拉普拉斯特征值和","authors":"S. Pirzada, Saleem Khan","doi":"10.5556/j.tkjm.54.2023.4120","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected graph with $n$ vertices, $m$ edges and having diameter $d$. The distance Laplacian matrix $D^{L}$ is defined as $D^L=$Diag$(Tr)-D$, where Diag$(Tr)$ is the diagonal matrix of vertex transmissions and $D$ is the distance matrix of $G$. The distance Laplacian eigenvalues of $G$ are the eigenvalues of $D^{L}$ and are denoted by $\\delta_{1}, ~\\delta_{1},~\\dots,\\delta_{n}$. In this paper, we obtain (a) the upper bounds for the sum of $k$ largest and (b) the lower bounds for the sum of $k$ smallest non-zero, distance Laplacian eigenvalues of $G$ in terms of order $n$, diameter $d$ and Wiener index $W$ of $G$. We characterize the extremal cases of these bounds. As a consequence, we also obtain the bounds for the sum of the powers of the distance Laplacian eigenvalues of $G$.","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":"26 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Sum of Distance Laplacian Eigenvalues of Graphs\",\"authors\":\"S. Pirzada, Saleem Khan\",\"doi\":\"10.5556/j.tkjm.54.2023.4120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a connected graph with $n$ vertices, $m$ edges and having diameter $d$. The distance Laplacian matrix $D^{L}$ is defined as $D^L=$Diag$(Tr)-D$, where Diag$(Tr)$ is the diagonal matrix of vertex transmissions and $D$ is the distance matrix of $G$. The distance Laplacian eigenvalues of $G$ are the eigenvalues of $D^{L}$ and are denoted by $\\\\delta_{1}, ~\\\\delta_{1},~\\\\dots,\\\\delta_{n}$. In this paper, we obtain (a) the upper bounds for the sum of $k$ largest and (b) the lower bounds for the sum of $k$ smallest non-zero, distance Laplacian eigenvalues of $G$ in terms of order $n$, diameter $d$ and Wiener index $W$ of $G$. We characterize the extremal cases of these bounds. As a consequence, we also obtain the bounds for the sum of the powers of the distance Laplacian eigenvalues of $G$.\",\"PeriodicalId\":45776,\"journal\":{\"name\":\"Tamkang Journal of Mathematics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tamkang Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5556/j.tkjm.54.2023.4120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/j.tkjm.54.2023.4120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

让 $G$ 是一个连图 $n$ 顶点, $m$ 边和直径 $d$. 距离拉普拉斯矩阵 $D^{L}$ 定义为 $D^L=$诊断$(Tr)-D$在那里,Diag$(Tr)$ 顶点传输的对角矩阵是 $D$ 距离矩阵是 $G$. 的距离拉普拉斯特征值 $G$ 特征值是 $D^{L}$ 表示为 $\delta_{1}, ~\delta_{1},~\dots,\delta_{n}$. 在本文中,我们得到(a)的和的上界 $k$ (b)和的下界 $k$ 的最小非零距离拉普拉斯特征值 $G$ 就顺序而言 $n$,直径 $d$ 维纳指数 $W$ 的 $G$. 我们描述了这些边界的极端情况。作为结果,我们也得到了距离的拉普拉斯特征值的幂和的界 $G$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Sum of Distance Laplacian Eigenvalues of Graphs
Let $G$ be a connected graph with $n$ vertices, $m$ edges and having diameter $d$. The distance Laplacian matrix $D^{L}$ is defined as $D^L=$Diag$(Tr)-D$, where Diag$(Tr)$ is the diagonal matrix of vertex transmissions and $D$ is the distance matrix of $G$. The distance Laplacian eigenvalues of $G$ are the eigenvalues of $D^{L}$ and are denoted by $\delta_{1}, ~\delta_{1},~\dots,\delta_{n}$. In this paper, we obtain (a) the upper bounds for the sum of $k$ largest and (b) the lower bounds for the sum of $k$ smallest non-zero, distance Laplacian eigenvalues of $G$ in terms of order $n$, diameter $d$ and Wiener index $W$ of $G$. We characterize the extremal cases of these bounds. As a consequence, we also obtain the bounds for the sum of the powers of the distance Laplacian eigenvalues of $G$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信