D. Samaras, Yang Wang, Lei Zhang, Sen Wang, Mohit Gupta
{"title":"石溪大学人脸建模与分析","authors":"D. Samaras, Yang Wang, Lei Zhang, Sen Wang, Mohit Gupta","doi":"10.1109/CVPR.2005.149","DOIUrl":null,"url":null,"abstract":"In this paper, we present our latest work on facial expression analysis, synthesis and face recognition. The advent of new technologies that allow the capture of massive amounts of high resolution, high frame rate face data, leads us to propose data-driven face models that accurately describe the appearance of faces under unknown pose and illumination conditions as well as to track subtle geometry changes that occur during expressions. In this paper, we also demonstrate our results for expression transfer among different subjects. We reduce the dimensionality of our data onto a lower dimensional space manifold and then decompose it into style and content parameters. This allows us to transfer subtle expression information (in the form of a style vector) between individuals to synthesize new expressions, as well as smoothly morph geometry and motion. Finally, we demonstrate the accuracy of our face modeling methods through an integrated example of image-driven re-targeting and relighting of facial expressions, where transfer of expression and illumination information between different individuals is possible.","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":"1 1","pages":"1200"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Face Modeling and Analysis in Stony Brook University\",\"authors\":\"D. Samaras, Yang Wang, Lei Zhang, Sen Wang, Mohit Gupta\",\"doi\":\"10.1109/CVPR.2005.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present our latest work on facial expression analysis, synthesis and face recognition. The advent of new technologies that allow the capture of massive amounts of high resolution, high frame rate face data, leads us to propose data-driven face models that accurately describe the appearance of faces under unknown pose and illumination conditions as well as to track subtle geometry changes that occur during expressions. In this paper, we also demonstrate our results for expression transfer among different subjects. We reduce the dimensionality of our data onto a lower dimensional space manifold and then decompose it into style and content parameters. This allows us to transfer subtle expression information (in the form of a style vector) between individuals to synthesize new expressions, as well as smoothly morph geometry and motion. Finally, we demonstrate the accuracy of our face modeling methods through an integrated example of image-driven re-targeting and relighting of facial expressions, where transfer of expression and illumination information between different individuals is possible.\",\"PeriodicalId\":89346,\"journal\":{\"name\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"volume\":\"1 1\",\"pages\":\"1200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2005.149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2005.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Face Modeling and Analysis in Stony Brook University
In this paper, we present our latest work on facial expression analysis, synthesis and face recognition. The advent of new technologies that allow the capture of massive amounts of high resolution, high frame rate face data, leads us to propose data-driven face models that accurately describe the appearance of faces under unknown pose and illumination conditions as well as to track subtle geometry changes that occur during expressions. In this paper, we also demonstrate our results for expression transfer among different subjects. We reduce the dimensionality of our data onto a lower dimensional space manifold and then decompose it into style and content parameters. This allows us to transfer subtle expression information (in the form of a style vector) between individuals to synthesize new expressions, as well as smoothly morph geometry and motion. Finally, we demonstrate the accuracy of our face modeling methods through an integrated example of image-driven re-targeting and relighting of facial expressions, where transfer of expression and illumination information between different individuals is possible.