{"title":"基于保护递归的高效协同编程的类型理论","authors":"Rasmus Ejlers Møgelberg","doi":"10.1145/2603088.2603132","DOIUrl":null,"url":null,"abstract":"To ensure consistency and decidability of type checking, proof assistants impose a requirement of productivity on corecursive definitions. In this paper we investigate a type-based alternative to the existing syntactic productivity checks of Coq and Agda, using a combination of guarded recursion and quantification over clocks. This approach was developed by Atkey and McBride in the simply typed setting, here we extend it to a calculus with dependent types. Building on previous work on the topos-of-trees model we construct a model of the calculus using a family of presheaf toposes, each of which can be seen as a multi-dimensional version of the topos-of-trees. As part of the model construction we must solve the coherence problem for modelling dependent types in locally cartesian closed categories simulatiously in a whole family of locally cartesian closed categories. We do this by embedding all the categories in a large one and applying a recent approach to the coherence problem due to Streicher and Voevodsky.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"A type theory for productive coprogramming via guarded recursion\",\"authors\":\"Rasmus Ejlers Møgelberg\",\"doi\":\"10.1145/2603088.2603132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To ensure consistency and decidability of type checking, proof assistants impose a requirement of productivity on corecursive definitions. In this paper we investigate a type-based alternative to the existing syntactic productivity checks of Coq and Agda, using a combination of guarded recursion and quantification over clocks. This approach was developed by Atkey and McBride in the simply typed setting, here we extend it to a calculus with dependent types. Building on previous work on the topos-of-trees model we construct a model of the calculus using a family of presheaf toposes, each of which can be seen as a multi-dimensional version of the topos-of-trees. As part of the model construction we must solve the coherence problem for modelling dependent types in locally cartesian closed categories simulatiously in a whole family of locally cartesian closed categories. We do this by embedding all the categories in a large one and applying a recent approach to the coherence problem due to Streicher and Voevodsky.\",\"PeriodicalId\":20649,\"journal\":{\"name\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2603088.2603132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A type theory for productive coprogramming via guarded recursion
To ensure consistency and decidability of type checking, proof assistants impose a requirement of productivity on corecursive definitions. In this paper we investigate a type-based alternative to the existing syntactic productivity checks of Coq and Agda, using a combination of guarded recursion and quantification over clocks. This approach was developed by Atkey and McBride in the simply typed setting, here we extend it to a calculus with dependent types. Building on previous work on the topos-of-trees model we construct a model of the calculus using a family of presheaf toposes, each of which can be seen as a multi-dimensional version of the topos-of-trees. As part of the model construction we must solve the coherence problem for modelling dependent types in locally cartesian closed categories simulatiously in a whole family of locally cartesian closed categories. We do this by embedding all the categories in a large one and applying a recent approach to the coherence problem due to Streicher and Voevodsky.