{"title":"氢氧化钾存在下烯丙基溴s -烷基化2-巯基苯并咪唑的动力学研究","authors":"Maw-Ling Wang , Yen-Chun Liu","doi":"10.1016/j.jcice.2008.05.013","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>S</em>-alkylation (substitution on sulfur atom) of 2-mercaptobenzimidazole (MBI or ArSH) by allyl bromide (RBr) was successfully carried out in an aqueous solution of KOH/organic solvent two-phase medium. The reaction, which may take place either in the organic phase or on the interface, is greatly enhanced in the presence of KOH without the aid of quaternary salts as the catalyst to promote the reaction. No product was obtained from <em>N</em>-alkylation (substitution on nitrogen atom) during or after the reaction period by using a limited amount of allyl bromide (RBr) relative to that of MBI. Based on the experimental evidence, the kinetic behaviors and the characteristics of the reaction are sufficiently described by the pseudo-first-order rate law. The effects of the reaction conditions, including the agitation speed, the amount of KOH, volume of water, volume of dichloromethane, amount of allyl bromide, amount of 2-mercaptobenzimidazole, organic solvents and temperature on the conversion of allyl bromide and the apparent rate constants (<em>k</em><sub>app</sub>) were investigated in detail. Peculiar result is obtained in studying the effect of the volume of water on the conversion (or the reaction rate) in this work. Rational explanations are provided for the observed phenomena from experimental results.</p></div>","PeriodicalId":17285,"journal":{"name":"Journal of The Chinese Institute of Chemical Engineers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcice.2008.05.013","citationCount":"3","resultStr":"{\"title\":\"Kinetic study of S-alkylation of 2-mercaptobenzimidazole by allyl bromide in the presence of potassium hydroxide\",\"authors\":\"Maw-Ling Wang , Yen-Chun Liu\",\"doi\":\"10.1016/j.jcice.2008.05.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>S</em>-alkylation (substitution on sulfur atom) of 2-mercaptobenzimidazole (MBI or ArSH) by allyl bromide (RBr) was successfully carried out in an aqueous solution of KOH/organic solvent two-phase medium. The reaction, which may take place either in the organic phase or on the interface, is greatly enhanced in the presence of KOH without the aid of quaternary salts as the catalyst to promote the reaction. No product was obtained from <em>N</em>-alkylation (substitution on nitrogen atom) during or after the reaction period by using a limited amount of allyl bromide (RBr) relative to that of MBI. Based on the experimental evidence, the kinetic behaviors and the characteristics of the reaction are sufficiently described by the pseudo-first-order rate law. The effects of the reaction conditions, including the agitation speed, the amount of KOH, volume of water, volume of dichloromethane, amount of allyl bromide, amount of 2-mercaptobenzimidazole, organic solvents and temperature on the conversion of allyl bromide and the apparent rate constants (<em>k</em><sub>app</sub>) were investigated in detail. Peculiar result is obtained in studying the effect of the volume of water on the conversion (or the reaction rate) in this work. Rational explanations are provided for the observed phenomena from experimental results.</p></div>\",\"PeriodicalId\":17285,\"journal\":{\"name\":\"Journal of The Chinese Institute of Chemical Engineers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jcice.2008.05.013\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Chinese Institute of Chemical Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0368165308001032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Institute of Chemical Engineers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368165308001032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinetic study of S-alkylation of 2-mercaptobenzimidazole by allyl bromide in the presence of potassium hydroxide
The S-alkylation (substitution on sulfur atom) of 2-mercaptobenzimidazole (MBI or ArSH) by allyl bromide (RBr) was successfully carried out in an aqueous solution of KOH/organic solvent two-phase medium. The reaction, which may take place either in the organic phase or on the interface, is greatly enhanced in the presence of KOH without the aid of quaternary salts as the catalyst to promote the reaction. No product was obtained from N-alkylation (substitution on nitrogen atom) during or after the reaction period by using a limited amount of allyl bromide (RBr) relative to that of MBI. Based on the experimental evidence, the kinetic behaviors and the characteristics of the reaction are sufficiently described by the pseudo-first-order rate law. The effects of the reaction conditions, including the agitation speed, the amount of KOH, volume of water, volume of dichloromethane, amount of allyl bromide, amount of 2-mercaptobenzimidazole, organic solvents and temperature on the conversion of allyl bromide and the apparent rate constants (kapp) were investigated in detail. Peculiar result is obtained in studying the effect of the volume of water on the conversion (or the reaction rate) in this work. Rational explanations are provided for the observed phenomena from experimental results.