基于余弦规则的离散截面曲率图

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
J. D. Plessis, X. Arsiwalla
{"title":"基于余弦规则的离散截面曲率图","authors":"J. D. Plessis, X. Arsiwalla","doi":"10.1093/comnet/cnad022","DOIUrl":null,"url":null,"abstract":"How does one generalize differential geometric constructs such as curvature of a manifold to the discrete world of graphs and other combinatorial structures? This problem carries significant importance for analyzing models of discrete spacetime in quantum gravity; inferring network geometry in network science; and manifold learning in data science. The key contribution of this paper is to introduce and validate a new estimator of discrete sectional curvature for random graphs with low metric-distortion. The latter are constructed via a specific graph sprinkling method on different manifolds with constant sectional curvature. We define a notion of metric distortion, which quantifies how well the graph metric approximates the metric of the underlying manifold. We show how graph sprinkling algorithms can be refined to produce hard annulus random geometric graphs with minimal metric distortion. We construct random geometric graphs for spheres, hyperbolic and euclidean planes; upon which we validate our curvature estimator. Numerical analysis reveals that the error of the estimated curvature diminishes as the mean metric distortion goes to zero, thus demonstrating convergence of the estimate. We also perform comparisons to other existing discrete curvature measures. Finally, we demonstrate two practical applications: (i) estimation of the earth's radius using geographical data; and (ii) sectional curvature distributions of self-similar fractals.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A cosine rule-based discrete sectional curvature for graphs\",\"authors\":\"J. D. Plessis, X. Arsiwalla\",\"doi\":\"10.1093/comnet/cnad022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How does one generalize differential geometric constructs such as curvature of a manifold to the discrete world of graphs and other combinatorial structures? This problem carries significant importance for analyzing models of discrete spacetime in quantum gravity; inferring network geometry in network science; and manifold learning in data science. The key contribution of this paper is to introduce and validate a new estimator of discrete sectional curvature for random graphs with low metric-distortion. The latter are constructed via a specific graph sprinkling method on different manifolds with constant sectional curvature. We define a notion of metric distortion, which quantifies how well the graph metric approximates the metric of the underlying manifold. We show how graph sprinkling algorithms can be refined to produce hard annulus random geometric graphs with minimal metric distortion. We construct random geometric graphs for spheres, hyperbolic and euclidean planes; upon which we validate our curvature estimator. Numerical analysis reveals that the error of the estimated curvature diminishes as the mean metric distortion goes to zero, thus demonstrating convergence of the estimate. We also perform comparisons to other existing discrete curvature measures. Finally, we demonstrate two practical applications: (i) estimation of the earth's radius using geographical data; and (ii) sectional curvature distributions of self-similar fractals.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/comnet/cnad022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnad022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

如何将诸如流形曲率之类的微分几何构造推广到图形和其他组合结构的离散世界?这个问题对于分析量子引力中的离散时空模型具有重要意义;网络科学中的网络几何推理以及数据科学中的多元学习。本文的主要贡献是引入并验证了一种新的低度量失真随机图的离散截面曲率估计。后者是在不同截面曲率不变的流形上,通过一种特殊的图喷洒方法来构造的。我们定义了度量失真的概念,它量化了图形度量近似底层流形的度量的程度。我们展示了如何改进图形喷洒算法,以产生具有最小度量失真的硬环随机几何图形。我们构造了球面、双曲平面和欧几里得平面的随机几何图;在此基础上我们验证曲率估计。数值分析表明,估计曲率的误差随着平均度规畸变趋近于零而减小,从而证明了估计的收敛性。我们还与其他现有的离散曲率度量进行了比较。最后,我们展示了两个实际应用:(i)利用地理数据估计地球半径;(ii)自相似分形的截面曲率分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cosine rule-based discrete sectional curvature for graphs
How does one generalize differential geometric constructs such as curvature of a manifold to the discrete world of graphs and other combinatorial structures? This problem carries significant importance for analyzing models of discrete spacetime in quantum gravity; inferring network geometry in network science; and manifold learning in data science. The key contribution of this paper is to introduce and validate a new estimator of discrete sectional curvature for random graphs with low metric-distortion. The latter are constructed via a specific graph sprinkling method on different manifolds with constant sectional curvature. We define a notion of metric distortion, which quantifies how well the graph metric approximates the metric of the underlying manifold. We show how graph sprinkling algorithms can be refined to produce hard annulus random geometric graphs with minimal metric distortion. We construct random geometric graphs for spheres, hyperbolic and euclidean planes; upon which we validate our curvature estimator. Numerical analysis reveals that the error of the estimated curvature diminishes as the mean metric distortion goes to zero, thus demonstrating convergence of the estimate. We also perform comparisons to other existing discrete curvature measures. Finally, we demonstrate two practical applications: (i) estimation of the earth's radius using geographical data; and (ii) sectional curvature distributions of self-similar fractals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信