基于键合周动力理论的准静态条件下渐进式破坏准脆性模型

IF 0.7 Q4 MECHANICS
H. Yakin, M. Rejab, Nur Hashim, N. Nikabdullah
{"title":"基于键合周动力理论的准静态条件下渐进式破坏准脆性模型","authors":"H. Yakin, M. Rejab, Nur Hashim, N. Nikabdullah","doi":"10.2298/tam230404006y","DOIUrl":null,"url":null,"abstract":"A novel quasi-brittle damage model implemented under quasistatic loading condition using bond-based peridynamics theory for progressive failure is proposed to better predict damage initiation and propagation in solid materials. Since peridynamics equation of motion was invented in dynamic configuration, this paper applies the adaptive dynamic relaxation equation to achieve steady-state in peridynamics formulation. To accurately characterise the progressive failure process in cohesive materials, we incorporate the dynamic equation with the novel damage model for quasi-brittle materials. Computational examples of 2D compressive and tensile problems using the proposed model are presented. This paper presents advancement by incorporating the adaptive dynamic equation approach into a new damage model for quasi-brittle materials. This amalgamation allows for a more accurate representation of the behavior of damaged materials, particularly in static or quasi-static loading situations, bringing the framework closer to reality. This research paves the way for the peridynamics formulation to be employed for a far broader class of loading condition behaviour than it is now able to.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new quasi-brittle damage model implemented under quasi-static condition using bond-based peridynamics theory for progressive failure\",\"authors\":\"H. Yakin, M. Rejab, Nur Hashim, N. Nikabdullah\",\"doi\":\"10.2298/tam230404006y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel quasi-brittle damage model implemented under quasistatic loading condition using bond-based peridynamics theory for progressive failure is proposed to better predict damage initiation and propagation in solid materials. Since peridynamics equation of motion was invented in dynamic configuration, this paper applies the adaptive dynamic relaxation equation to achieve steady-state in peridynamics formulation. To accurately characterise the progressive failure process in cohesive materials, we incorporate the dynamic equation with the novel damage model for quasi-brittle materials. Computational examples of 2D compressive and tensile problems using the proposed model are presented. This paper presents advancement by incorporating the adaptive dynamic equation approach into a new damage model for quasi-brittle materials. This amalgamation allows for a more accurate representation of the behavior of damaged materials, particularly in static or quasi-static loading situations, bringing the framework closer to reality. This research paves the way for the peridynamics formulation to be employed for a far broader class of loading condition behaviour than it is now able to.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/tam230404006y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam230404006y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地预测固体材料损伤的起裂和扩展,提出了一种基于键合周动力理论的准静态加载下的准脆性损伤模型。由于在动态构型中建立了围动力学方程,本文采用自适应动态松弛方程来实现围动力学方程的定常。为了准确地描述粘性材料的渐进破坏过程,我们将动力学方程与新的准脆性材料损伤模型结合起来。给出了用该模型求解二维压缩和拉伸问题的算例。本文提出了将自适应动力学方程方法引入准脆性材料损伤模型的研究进展。这种合并允许更准确地表示损坏材料的行为,特别是在静态或准静态加载情况下,使框架更接近现实。这项研究为周动力学公式被用于比现在更广泛的加载条件行为类别铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new quasi-brittle damage model implemented under quasi-static condition using bond-based peridynamics theory for progressive failure
A novel quasi-brittle damage model implemented under quasistatic loading condition using bond-based peridynamics theory for progressive failure is proposed to better predict damage initiation and propagation in solid materials. Since peridynamics equation of motion was invented in dynamic configuration, this paper applies the adaptive dynamic relaxation equation to achieve steady-state in peridynamics formulation. To accurately characterise the progressive failure process in cohesive materials, we incorporate the dynamic equation with the novel damage model for quasi-brittle materials. Computational examples of 2D compressive and tensile problems using the proposed model are presented. This paper presents advancement by incorporating the adaptive dynamic equation approach into a new damage model for quasi-brittle materials. This amalgamation allows for a more accurate representation of the behavior of damaged materials, particularly in static or quasi-static loading situations, bringing the framework closer to reality. This research paves the way for the peridynamics formulation to be employed for a far broader class of loading condition behaviour than it is now able to.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信