自动驾驶系统中的驾驶模式管理

D. Insua, William N. Caballero, Roi Naveiro
{"title":"自动驾驶系统中的驾驶模式管理","authors":"D. Insua, William N. Caballero, Roi Naveiro","doi":"10.1287/trsc.2021.1110","DOIUrl":null,"url":null,"abstract":"Current technology is unable to produce massively deployable, fully automated vehicles that do not require human intervention. Given that such limitations are projected to persist for decades, scenarios requiring a driver to assume control of a semiautomated vehicle, and vice versa, will remain a feature of modern roadways for the foreseeable future. Herein, we adopt a comprehensive perspective of this problem by simultaneously considering operational design domain supervision, driver and environment monitoring, trajectory planning, and driver-intervention performance assessment. More specifically, we develop a modeling framework for each of the aforementioned functions by leveraging decision analysis and Bayesian forecasting. Utilizing this framework, a suite of algorithms is subsequently proposed for driving-mode management and early warning emission, according to a management by exception principle. The efficacy of the developed methods is illustrated and examined via a simulated case study.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"103 1","pages":"1259-1278"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Managing Driving Modes in Automated Driving Systems\",\"authors\":\"D. Insua, William N. Caballero, Roi Naveiro\",\"doi\":\"10.1287/trsc.2021.1110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current technology is unable to produce massively deployable, fully automated vehicles that do not require human intervention. Given that such limitations are projected to persist for decades, scenarios requiring a driver to assume control of a semiautomated vehicle, and vice versa, will remain a feature of modern roadways for the foreseeable future. Herein, we adopt a comprehensive perspective of this problem by simultaneously considering operational design domain supervision, driver and environment monitoring, trajectory planning, and driver-intervention performance assessment. More specifically, we develop a modeling framework for each of the aforementioned functions by leveraging decision analysis and Bayesian forecasting. Utilizing this framework, a suite of algorithms is subsequently proposed for driving-mode management and early warning emission, according to a management by exception principle. The efficacy of the developed methods is illustrated and examined via a simulated case study.\",\"PeriodicalId\":23247,\"journal\":{\"name\":\"Transp. Sci.\",\"volume\":\"103 1\",\"pages\":\"1259-1278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transp. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2021.1110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2021.1110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

目前的技术还无法生产出无需人工干预、可大规模部署的全自动车辆。考虑到这些限制预计将持续数十年,在可预见的未来,需要驾驶员控制半自动车辆的情况将仍然是现代道路的一个特征。在此,我们采用综合视角,同时考虑操作设计领域监督、驾驶员和环境监测、轨迹规划和驾驶员干预绩效评估。更具体地说,我们通过利用决策分析和贝叶斯预测为上述每个功能开发建模框架。利用该框架,根据异常管理原则,提出了一套驱动模式管理和预警排放的算法。通过一个模拟的案例研究说明并检验了所开发方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Managing Driving Modes in Automated Driving Systems
Current technology is unable to produce massively deployable, fully automated vehicles that do not require human intervention. Given that such limitations are projected to persist for decades, scenarios requiring a driver to assume control of a semiautomated vehicle, and vice versa, will remain a feature of modern roadways for the foreseeable future. Herein, we adopt a comprehensive perspective of this problem by simultaneously considering operational design domain supervision, driver and environment monitoring, trajectory planning, and driver-intervention performance assessment. More specifically, we develop a modeling framework for each of the aforementioned functions by leveraging decision analysis and Bayesian forecasting. Utilizing this framework, a suite of algorithms is subsequently proposed for driving-mode management and early warning emission, according to a management by exception principle. The efficacy of the developed methods is illustrated and examined via a simulated case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信