Giovanni Mariani, G. Palermo, V. Zaccaria, C. Silvano
{"title":"绝望:利用预测仿真调度加速设计空间探索","authors":"Giovanni Mariani, G. Palermo, V. Zaccaria, C. Silvano","doi":"10.7873/DATE.2014.231","DOIUrl":null,"url":null,"abstract":"The design space exploration (DSE) phase is used to tune configurable system parameters and it generally consists of a multiobjective optimization (MOO) problem. It is usually done at pre-design phase and consists of the evaluation of large design spaces where each configuration requires long simulation. Several heuristic techniques have been proposed in the past and the recent trend is reducing the exploration time by using analytic prediction models to approximate the system metrics, effectively pruning sub-optimal configurations from the exploration scope. However, there is still a missing path towards the effective usage of the underlying computing resources used by the DSE process. In this work, we will show that an alternative and almost orthogonal approach - focused on exploiting the available parallelism in terms of computing resources - can be used to better schedule the simulations and to obtain a high speedup with respect to state of the art approaches, without compromising the accuracy of exploration results. Experimental results will be presented by dealing with the DSE problem of a shared memory multi-core system considering a variable number of available parallel resources to support the DSE phase1.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"16 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DeSpErate: Speeding-up design space exploration by using predictive simulation scheduling\",\"authors\":\"Giovanni Mariani, G. Palermo, V. Zaccaria, C. Silvano\",\"doi\":\"10.7873/DATE.2014.231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design space exploration (DSE) phase is used to tune configurable system parameters and it generally consists of a multiobjective optimization (MOO) problem. It is usually done at pre-design phase and consists of the evaluation of large design spaces where each configuration requires long simulation. Several heuristic techniques have been proposed in the past and the recent trend is reducing the exploration time by using analytic prediction models to approximate the system metrics, effectively pruning sub-optimal configurations from the exploration scope. However, there is still a missing path towards the effective usage of the underlying computing resources used by the DSE process. In this work, we will show that an alternative and almost orthogonal approach - focused on exploiting the available parallelism in terms of computing resources - can be used to better schedule the simulations and to obtain a high speedup with respect to state of the art approaches, without compromising the accuracy of exploration results. Experimental results will be presented by dealing with the DSE problem of a shared memory multi-core system considering a variable number of available parallel resources to support the DSE phase1.\",\"PeriodicalId\":6550,\"journal\":{\"name\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"16 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2014.231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DeSpErate: Speeding-up design space exploration by using predictive simulation scheduling
The design space exploration (DSE) phase is used to tune configurable system parameters and it generally consists of a multiobjective optimization (MOO) problem. It is usually done at pre-design phase and consists of the evaluation of large design spaces where each configuration requires long simulation. Several heuristic techniques have been proposed in the past and the recent trend is reducing the exploration time by using analytic prediction models to approximate the system metrics, effectively pruning sub-optimal configurations from the exploration scope. However, there is still a missing path towards the effective usage of the underlying computing resources used by the DSE process. In this work, we will show that an alternative and almost orthogonal approach - focused on exploiting the available parallelism in terms of computing resources - can be used to better schedule the simulations and to obtain a high speedup with respect to state of the art approaches, without compromising the accuracy of exploration results. Experimental results will be presented by dealing with the DSE problem of a shared memory multi-core system considering a variable number of available parallel resources to support the DSE phase1.