JB*-三元组的开单位球上的α - bloch空间算子

Tatsuhiro Honda
{"title":"JB*-三元组的开单位球上的α - bloch空间算子","authors":"Tatsuhiro Honda","doi":"10.24193/subbmath.2022.2.08","DOIUrl":null,"url":null,"abstract":"\"Let $\\B_X$ be a bounded symmetric domain realized as the open unit ball of a JB*-triple $X$ which may be infinite dimensional. In this paper, we characterize the bounded weighted composition operators from the Hardy space $H^{\\infty}(\\mathbb{B}_X)$ into the $\\alpha $-Bloch space $\\mathcal{B}^\\alpha (\\B_X)$ on $\\mathbb{B}_X$. Later, we show the multiplication operator from $H^{\\infty}(\\mathbb{B}_X)$ into $\\mathcal{B}^\\alpha (\\B_X)$ is bounded. Also, we give the operator norm of the bounded multiplication operator.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operators of the alfa-Bloch space on the open unit ball of a JB*-triple\",\"authors\":\"Tatsuhiro Honda\",\"doi\":\"10.24193/subbmath.2022.2.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Let $\\\\B_X$ be a bounded symmetric domain realized as the open unit ball of a JB*-triple $X$ which may be infinite dimensional. In this paper, we characterize the bounded weighted composition operators from the Hardy space $H^{\\\\infty}(\\\\mathbb{B}_X)$ into the $\\\\alpha $-Bloch space $\\\\mathcal{B}^\\\\alpha (\\\\B_X)$ on $\\\\mathbb{B}_X$. Later, we show the multiplication operator from $H^{\\\\infty}(\\\\mathbb{B}_X)$ into $\\\\mathcal{B}^\\\\alpha (\\\\B_X)$ is bounded. Also, we give the operator norm of the bounded multiplication operator.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.2.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.2.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$\B_X$为一个有界对称域,实现为一个JB*-三重体$X$的开放单位球,它可以是无限维的。本文在$\mathbb{B}_X$上刻画了从Hardy空间$H^{\infty}(\mathbb{B}_X)$到$\alpha $ -Bloch空间$\mathcal{B}^\alpha (\B_X)$的有界加权复合算子。稍后,我们将展示从$H^{\infty}(\mathbb{B}_X)$到$\mathcal{B}^\alpha (\B_X)$的乘法运算符是有界的。同时给出了有界乘法算子的算子范数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operators of the alfa-Bloch space on the open unit ball of a JB*-triple
"Let $\B_X$ be a bounded symmetric domain realized as the open unit ball of a JB*-triple $X$ which may be infinite dimensional. In this paper, we characterize the bounded weighted composition operators from the Hardy space $H^{\infty}(\mathbb{B}_X)$ into the $\alpha $-Bloch space $\mathcal{B}^\alpha (\B_X)$ on $\mathbb{B}_X$. Later, we show the multiplication operator from $H^{\infty}(\mathbb{B}_X)$ into $\mathcal{B}^\alpha (\B_X)$ is bounded. Also, we give the operator norm of the bounded multiplication operator."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
31 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信