主动机器人协助装配任务中人类偏好的迁移学习

IF 4.2 Q2 ROBOTICS
Heramb Nemlekar, N. Dhanaraj, Angelos Guan, S. Gupta, S. Nikolaidis
{"title":"主动机器人协助装配任务中人类偏好的迁移学习","authors":"Heramb Nemlekar, N. Dhanaraj, Angelos Guan, S. Gupta, S. Nikolaidis","doi":"10.1145/3568162.3576965","DOIUrl":null,"url":null,"abstract":"We focus on enabling robots to proactively assist humans in assembly tasks by adapting to their preferred sequence of actions. Much work on robot adaptation requires human demonstrations of the task. However, human demonstrations of real-world assemblies can be tedious and time-consuming. Thus, we propose learning human preferences from demonstrations in a shorter, canonical task to predict user actions in the actual assembly task. The proposed system uses the preference model learned from the canonical task as a prior and updates the model through interaction when predictions are inaccurate. We evaluate the proposed system in simulated assembly tasks and in a real-world human-robot assembly study and we show that both transferring the preference model from the canonical task, as well as updating the model online, contribute to improved accuracy in human action prediction. This enables the robot to proactively assist users, significantly reduce their idle time, and improve their experience working with the robot, compared to a reactive robot.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":"96 2 Pt 1 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning of Human Preferences for Proactive Robot Assistance in Assembly Tasks\",\"authors\":\"Heramb Nemlekar, N. Dhanaraj, Angelos Guan, S. Gupta, S. Nikolaidis\",\"doi\":\"10.1145/3568162.3576965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We focus on enabling robots to proactively assist humans in assembly tasks by adapting to their preferred sequence of actions. Much work on robot adaptation requires human demonstrations of the task. However, human demonstrations of real-world assemblies can be tedious and time-consuming. Thus, we propose learning human preferences from demonstrations in a shorter, canonical task to predict user actions in the actual assembly task. The proposed system uses the preference model learned from the canonical task as a prior and updates the model through interaction when predictions are inaccurate. We evaluate the proposed system in simulated assembly tasks and in a real-world human-robot assembly study and we show that both transferring the preference model from the canonical task, as well as updating the model online, contribute to improved accuracy in human action prediction. This enables the robot to proactively assist users, significantly reduce their idle time, and improve their experience working with the robot, compared to a reactive robot.\",\"PeriodicalId\":36515,\"journal\":{\"name\":\"ACM Transactions on Human-Robot Interaction\",\"volume\":\"96 2 Pt 1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Human-Robot Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3568162.3576965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568162.3576965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们专注于使机器人能够通过适应人类偏好的动作序列来主动协助人类完成组装任务。许多关于机器人适应的工作都需要人类的示范。然而,真实世界的程序集的人工演示既繁琐又耗时。因此,我们建议从较短的规范任务中的演示中学习人类偏好,以预测实际组装任务中的用户操作。该系统使用从规范任务中学习到的偏好模型作为先验,并在预测不准确时通过交互更新模型。我们在模拟装配任务和现实世界的人-机器人装配研究中对所提出的系统进行了评估,结果表明,从规范任务转移偏好模型以及在线更新模型都有助于提高人类行为预测的准确性。与被动机器人相比,这使得机器人能够主动帮助用户,大大减少他们的空闲时间,并改善他们与机器人一起工作的体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer Learning of Human Preferences for Proactive Robot Assistance in Assembly Tasks
We focus on enabling robots to proactively assist humans in assembly tasks by adapting to their preferred sequence of actions. Much work on robot adaptation requires human demonstrations of the task. However, human demonstrations of real-world assemblies can be tedious and time-consuming. Thus, we propose learning human preferences from demonstrations in a shorter, canonical task to predict user actions in the actual assembly task. The proposed system uses the preference model learned from the canonical task as a prior and updates the model through interaction when predictions are inaccurate. We evaluate the proposed system in simulated assembly tasks and in a real-world human-robot assembly study and we show that both transferring the preference model from the canonical task, as well as updating the model online, contribute to improved accuracy in human action prediction. This enables the robot to proactively assist users, significantly reduce their idle time, and improve their experience working with the robot, compared to a reactive robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Human-Robot Interaction
ACM Transactions on Human-Robot Interaction Computer Science-Artificial Intelligence
CiteScore
7.70
自引率
5.90%
发文量
65
期刊介绍: ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain. THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信