过冷聚萘二甲酸乙二醇酯的研制与表征

Jian Wang, Hang Li, P. Dai, Jinnan Chen
{"title":"过冷聚萘二甲酸乙二醇酯的研制与表征","authors":"Jian Wang, Hang Li, P. Dai, Jinnan Chen","doi":"10.6000/1929-5995.2023.12.07","DOIUrl":null,"url":null,"abstract":"The utilization of undercooled or supercooled polymers presents a promising approach for the creation of single-polymer composites (SPCs), applicable not only to compaction processing but also to extrusion, injection molding, and 3D printing techniques. This study focuses on the development and characterization of supercooled polyethylene naphthalate (PEN) through differential scanning calorimetry (DSC) and rheological measurements. By employing predetermined conditions, a supercooling degree of 50 ˚C for PEN was achieved. The impact of maximum heating temperature, cooling rate, and shear rate on the supercooling degree was examined, revealing that higher supercooling degrees of PEN can be attained by increasing these factors. Additionally, the flow behavior of supercooled polymer melts at various temperatures was analyzed. The supercooling state of PEN exhibited remarkable stability for a minimum duration of half an hour at temperatures exceeding 250 ˚C.","PeriodicalId":16998,"journal":{"name":"Journal of Research Updates in Polymer Science","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Characterization of Supercooled Polyethylene Naphthalate\",\"authors\":\"Jian Wang, Hang Li, P. Dai, Jinnan Chen\",\"doi\":\"10.6000/1929-5995.2023.12.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of undercooled or supercooled polymers presents a promising approach for the creation of single-polymer composites (SPCs), applicable not only to compaction processing but also to extrusion, injection molding, and 3D printing techniques. This study focuses on the development and characterization of supercooled polyethylene naphthalate (PEN) through differential scanning calorimetry (DSC) and rheological measurements. By employing predetermined conditions, a supercooling degree of 50 ˚C for PEN was achieved. The impact of maximum heating temperature, cooling rate, and shear rate on the supercooling degree was examined, revealing that higher supercooling degrees of PEN can be attained by increasing these factors. Additionally, the flow behavior of supercooled polymer melts at various temperatures was analyzed. The supercooling state of PEN exhibited remarkable stability for a minimum duration of half an hour at temperatures exceeding 250 ˚C.\",\"PeriodicalId\":16998,\"journal\":{\"name\":\"Journal of Research Updates in Polymer Science\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research Updates in Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6000/1929-5995.2023.12.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research Updates in Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-5995.2023.12.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用过冷或过冷聚合物为制造单聚合物复合材料(spc)提供了一种很有前途的方法,不仅适用于压实加工,还适用于挤出、注射成型和3D打印技术。本研究主要通过差示扫描量热法(DSC)和流变学测量来开发和表征过冷聚萘二甲酸乙二醇酯(PEN)。采用预先设定的条件,使PEN的过冷度达到50℃。研究了最高加热温度、冷却速率和剪切速率对过冷度的影响,结果表明,增加这些因素可以获得更高的过冷度。此外,还分析了过冷聚合物熔体在不同温度下的流动行为。在超过250˚C的温度下,PEN的过冷状态在至少半小时内表现出显著的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Characterization of Supercooled Polyethylene Naphthalate
The utilization of undercooled or supercooled polymers presents a promising approach for the creation of single-polymer composites (SPCs), applicable not only to compaction processing but also to extrusion, injection molding, and 3D printing techniques. This study focuses on the development and characterization of supercooled polyethylene naphthalate (PEN) through differential scanning calorimetry (DSC) and rheological measurements. By employing predetermined conditions, a supercooling degree of 50 ˚C for PEN was achieved. The impact of maximum heating temperature, cooling rate, and shear rate on the supercooling degree was examined, revealing that higher supercooling degrees of PEN can be attained by increasing these factors. Additionally, the flow behavior of supercooled polymer melts at various temperatures was analyzed. The supercooling state of PEN exhibited remarkable stability for a minimum duration of half an hour at temperatures exceeding 250 ˚C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信