具有度和从下有界的不变量的Q-Fano变的有界性

IF 1.3 1区 数学 Q1 MATHEMATICS
Chen Jiang
{"title":"具有度和从下有界的不变量的Q-Fano变的有界性","authors":"Chen Jiang","doi":"10.24033/ASENS.2445","DOIUrl":null,"url":null,"abstract":"We show that $\\mathbb{Q}$-Fano varieties of fixed dimension with anti-canonical degrees and alpha-invariants bounded from below form a bounded family. As a corollary, K-semistable $\\mathbb{Q}$-Fano varieties of fixed dimension with anti-canonical degrees bounded from below form a bounded family.","PeriodicalId":50971,"journal":{"name":"Annales Scientifiques De L Ecole Normale Superieure","volume":"40 1","pages":"1235-1248"},"PeriodicalIF":1.3000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Boundedness of Q-Fano varieties with degrees and alpha-invariants bounded from below\",\"authors\":\"Chen Jiang\",\"doi\":\"10.24033/ASENS.2445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that $\\\\mathbb{Q}$-Fano varieties of fixed dimension with anti-canonical degrees and alpha-invariants bounded from below form a bounded family. As a corollary, K-semistable $\\\\mathbb{Q}$-Fano varieties of fixed dimension with anti-canonical degrees bounded from below form a bounded family.\",\"PeriodicalId\":50971,\"journal\":{\"name\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"volume\":\"40 1\",\"pages\":\"1235-1248\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2017-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Scientifiques De L Ecole Normale Superieure\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ASENS.2445\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Scientifiques De L Ecole Normale Superieure","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ASENS.2445","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 49

摘要

我们证明了$\mathbb{Q}$-Fano具有反正则度的定维变量和从下有界的α不变量构成了一个有界族。作为推论,具有从下有界的反正则度的固定维数的k -半稳定$\mathbb{Q}$-Fano变体形成了一个有界族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness of Q-Fano varieties with degrees and alpha-invariants bounded from below
We show that $\mathbb{Q}$-Fano varieties of fixed dimension with anti-canonical degrees and alpha-invariants bounded from below form a bounded family. As a corollary, K-semistable $\mathbb{Q}$-Fano varieties of fixed dimension with anti-canonical degrees bounded from below form a bounded family.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Annales scientifiques de l''École normale supérieure were founded in 1864 by Louis Pasteur. The journal dealt with subjects touching on Physics, Chemistry and Natural Sciences. Around the turn of the century, it was decided that the journal should be devoted to Mathematics. Today, the Annales are open to all fields of mathematics. The Editorial Board, with the help of referees, selects articles which are mathematically very substantial. The Journal insists on maintaining a tradition of clarity and rigour in the exposition. The Annales scientifiques de l''École normale supérieures have been published by Gauthier-Villars unto 1997, then by Elsevier from 1999 to 2007. Since January 2008, they are published by the Société Mathématique de France.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信