模糊Yao: plain模型中的恒轮自适应安全多方计算

R. Canetti, Oxana Poburinnaya, Muthuramakrishnan Venkitasubramaniam
{"title":"模糊Yao: plain模型中的恒轮自适应安全多方计算","authors":"R. Canetti, Oxana Poburinnaya, Muthuramakrishnan Venkitasubramaniam","doi":"10.1145/3055399.3055495","DOIUrl":null,"url":null,"abstract":"Yao's circuit garbling scheme is one of the basic building blocks of cryptographic protocol design. Originally designed to enable two-message, two-party secure computation, the scheme has been extended in many ways and has innumerable applications. Still, a basic question has remained open throughout the years: Can the scheme be extended to guarantee security in the face of an adversary that corrupts both parties, adaptively, as the computation proceeds? We provide a positive answer to this question. We define a new type of encryption, called functionally equivocal encryption (FEE), and show that when Yao's scheme is implemented with an FEE as the underlying encryption mechanism, it becomes secure against such adaptive adversaries. We then show how to implement FEE from any one way function. Combining our scheme with non-committing encryption, we obtain the first two-message, two-party computation protocol, and the first constant-rounds multiparty computation protocol, in the plain model, that are secure against semi-honest adversaries who can adaptively corrupt all parties. A number of extensions and applications are described within.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Equivocating Yao: constant-round adaptively secure multiparty computation in the plain model\",\"authors\":\"R. Canetti, Oxana Poburinnaya, Muthuramakrishnan Venkitasubramaniam\",\"doi\":\"10.1145/3055399.3055495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yao's circuit garbling scheme is one of the basic building blocks of cryptographic protocol design. Originally designed to enable two-message, two-party secure computation, the scheme has been extended in many ways and has innumerable applications. Still, a basic question has remained open throughout the years: Can the scheme be extended to guarantee security in the face of an adversary that corrupts both parties, adaptively, as the computation proceeds? We provide a positive answer to this question. We define a new type of encryption, called functionally equivocal encryption (FEE), and show that when Yao's scheme is implemented with an FEE as the underlying encryption mechanism, it becomes secure against such adaptive adversaries. We then show how to implement FEE from any one way function. Combining our scheme with non-committing encryption, we obtain the first two-message, two-party computation protocol, and the first constant-rounds multiparty computation protocol, in the plain model, that are secure against semi-honest adversaries who can adaptively corrupt all parties. A number of extensions and applications are described within.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

Yao的电路乱码方案是加密协议设计的基本组成部分之一。该方案最初的设计是为了实现双消息、两方的安全计算,现已扩展到许多方面,并具有无数的应用。尽管如此,一个基本的问题多年来一直没有解决:在计算进行的过程中,该方案是否可以扩展到在面对对手时保证安全性,从而自适应地破坏双方?我们对这个问题给出了肯定的答案。我们定义了一种新的加密类型,称为功能模糊加密(FEE),并表明当Yao的方案以FEE作为底层加密机制实现时,它对这种自适应对手变得安全。然后,我们将展示如何从任何单向函数实现FEE。将我们的方案与非提交加密相结合,我们在普通模型中获得了第一个双消息、两方计算协议和第一个常数轮多方计算协议,它们对于可以自适应地破坏所有各方的半诚实对手是安全的。中描述了许多扩展和应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivocating Yao: constant-round adaptively secure multiparty computation in the plain model
Yao's circuit garbling scheme is one of the basic building blocks of cryptographic protocol design. Originally designed to enable two-message, two-party secure computation, the scheme has been extended in many ways and has innumerable applications. Still, a basic question has remained open throughout the years: Can the scheme be extended to guarantee security in the face of an adversary that corrupts both parties, adaptively, as the computation proceeds? We provide a positive answer to this question. We define a new type of encryption, called functionally equivocal encryption (FEE), and show that when Yao's scheme is implemented with an FEE as the underlying encryption mechanism, it becomes secure against such adaptive adversaries. We then show how to implement FEE from any one way function. Combining our scheme with non-committing encryption, we obtain the first two-message, two-party computation protocol, and the first constant-rounds multiparty computation protocol, in the plain model, that are secure against semi-honest adversaries who can adaptively corrupt all parties. A number of extensions and applications are described within.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信