{"title":"半参数协变量测量误差下的小面积估计","authors":"Reyhane Sefidkar, Mahmoud Torabi, Amir Kavousi","doi":"10.1111/anzs.12377","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In recent years, small area estimation has played an important role in statistics as it deals with the problem of obtaining reliable estimates for parameters of interest in areas with small or even zero sample sizes corresponding to population sizes. Nested error linear regression models are often used in small area estimation assuming that the covariates are measured without error and also the relationship between covariates and response variable is linear. Small area models have also been extended to the case in which a linear relationship may not hold, using penalised spline (P-spline) regression, but assuming that the covariates are measured without error. Recently, a nested error regression model using a P-spline regression model, for the fixed part of the model, has been studied assuming the presence of measurement error in covariate, in the Bayesian framework. In this paper, we propose a frequentist approach to study a semi-parametric nested error regression model using P-splines with a covariate measured with error. In particular, the pseudo-empirical best predictors of small area means and their corresponding mean squared prediction error estimates are studied. Performance of the proposed approach is evaluated through a simulation and also by a real data application. We propose a frequentist approach to study a semi-parametric nested error regression model using P-splines with a covariate measured with error.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"64 4","pages":"495-515"},"PeriodicalIF":0.8000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small area estimation under a semi-parametric covariate measured with error\",\"authors\":\"Reyhane Sefidkar, Mahmoud Torabi, Amir Kavousi\",\"doi\":\"10.1111/anzs.12377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In recent years, small area estimation has played an important role in statistics as it deals with the problem of obtaining reliable estimates for parameters of interest in areas with small or even zero sample sizes corresponding to population sizes. Nested error linear regression models are often used in small area estimation assuming that the covariates are measured without error and also the relationship between covariates and response variable is linear. Small area models have also been extended to the case in which a linear relationship may not hold, using penalised spline (P-spline) regression, but assuming that the covariates are measured without error. Recently, a nested error regression model using a P-spline regression model, for the fixed part of the model, has been studied assuming the presence of measurement error in covariate, in the Bayesian framework. In this paper, we propose a frequentist approach to study a semi-parametric nested error regression model using P-splines with a covariate measured with error. In particular, the pseudo-empirical best predictors of small area means and their corresponding mean squared prediction error estimates are studied. Performance of the proposed approach is evaluated through a simulation and also by a real data application. We propose a frequentist approach to study a semi-parametric nested error regression model using P-splines with a covariate measured with error.</p>\\n </div>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"64 4\",\"pages\":\"495-515\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12377\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12377","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Small area estimation under a semi-parametric covariate measured with error
In recent years, small area estimation has played an important role in statistics as it deals with the problem of obtaining reliable estimates for parameters of interest in areas with small or even zero sample sizes corresponding to population sizes. Nested error linear regression models are often used in small area estimation assuming that the covariates are measured without error and also the relationship between covariates and response variable is linear. Small area models have also been extended to the case in which a linear relationship may not hold, using penalised spline (P-spline) regression, but assuming that the covariates are measured without error. Recently, a nested error regression model using a P-spline regression model, for the fixed part of the model, has been studied assuming the presence of measurement error in covariate, in the Bayesian framework. In this paper, we propose a frequentist approach to study a semi-parametric nested error regression model using P-splines with a covariate measured with error. In particular, the pseudo-empirical best predictors of small area means and their corresponding mean squared prediction error estimates are studied. Performance of the proposed approach is evaluated through a simulation and also by a real data application. We propose a frequentist approach to study a semi-parametric nested error regression model using P-splines with a covariate measured with error.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.