Athithanambi Anna Anban, Manonmani Krishnaswamy, Rajesh Appasamy
{"title":"花序/玻璃纤维增强杂化环氧复合材料的力学性能","authors":"Athithanambi Anna Anban, Manonmani Krishnaswamy, Rajesh Appasamy","doi":"10.17222/mit.2022.588","DOIUrl":null,"url":null,"abstract":"The biodegradability and environmental friendliness of natural fibres makes them suitable for implementation in a circular economy. As a result, several natural fibres and processing methods have evolved. The hydrophilic nature of ligno cellulose fibrils restricts the effective adhesion at the interface of fibre and matrix. The hybridization of natural fibres with synthetic fibres leads to promising characteristics of the resulting composite materials. This paper deals with the hybridization of conventional glass fibre and natural fibre extracted from coconut inflorescence. The effect of hybridization on the tensile and flexural strengths of surface-modified inflorescence fibre with glass fibres was investigated. The composites were fabricated using a hand-layup technique by varying the inflorescence fibre and glass-fibre reinforcement composition by (5, 10, 15 and 20) %. A notable improvement in the tensile and flexural strengths of 193.65 MPa and 240.69 MPa was observed for 85 % of glass and 15 % of benzoyl-chloride-modified inflorescence-fibre-reinforced hybrid composites. The elimination of amorphous constituents in the inflorescence fibres was checked by XRD and FTIR analyses. A surface-morphology analysis of unmodified and benzoyl-chloride-modified inflorescence fibres revealed pores and cavity formation on the fibril walls. These composites with superior mechanical properties can be an alternative to synthetic fibre composites and ensure the implementation of a circular economy and sustainable manufacturing.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":"66 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MECHANICAL BEHAVIOUR OF INFLORESCENCE/GLASS-FIBRE-REINFORCED HYBRID EPOXY COMPOSITES\",\"authors\":\"Athithanambi Anna Anban, Manonmani Krishnaswamy, Rajesh Appasamy\",\"doi\":\"10.17222/mit.2022.588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The biodegradability and environmental friendliness of natural fibres makes them suitable for implementation in a circular economy. As a result, several natural fibres and processing methods have evolved. The hydrophilic nature of ligno cellulose fibrils restricts the effective adhesion at the interface of fibre and matrix. The hybridization of natural fibres with synthetic fibres leads to promising characteristics of the resulting composite materials. This paper deals with the hybridization of conventional glass fibre and natural fibre extracted from coconut inflorescence. The effect of hybridization on the tensile and flexural strengths of surface-modified inflorescence fibre with glass fibres was investigated. The composites were fabricated using a hand-layup technique by varying the inflorescence fibre and glass-fibre reinforcement composition by (5, 10, 15 and 20) %. A notable improvement in the tensile and flexural strengths of 193.65 MPa and 240.69 MPa was observed for 85 % of glass and 15 % of benzoyl-chloride-modified inflorescence-fibre-reinforced hybrid composites. The elimination of amorphous constituents in the inflorescence fibres was checked by XRD and FTIR analyses. A surface-morphology analysis of unmodified and benzoyl-chloride-modified inflorescence fibres revealed pores and cavity formation on the fibril walls. These composites with superior mechanical properties can be an alternative to synthetic fibre composites and ensure the implementation of a circular economy and sustainable manufacturing.\",\"PeriodicalId\":18258,\"journal\":{\"name\":\"Materiali in tehnologije\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiali in tehnologije\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17222/mit.2022.588\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17222/mit.2022.588","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
MECHANICAL BEHAVIOUR OF INFLORESCENCE/GLASS-FIBRE-REINFORCED HYBRID EPOXY COMPOSITES
The biodegradability and environmental friendliness of natural fibres makes them suitable for implementation in a circular economy. As a result, several natural fibres and processing methods have evolved. The hydrophilic nature of ligno cellulose fibrils restricts the effective adhesion at the interface of fibre and matrix. The hybridization of natural fibres with synthetic fibres leads to promising characteristics of the resulting composite materials. This paper deals with the hybridization of conventional glass fibre and natural fibre extracted from coconut inflorescence. The effect of hybridization on the tensile and flexural strengths of surface-modified inflorescence fibre with glass fibres was investigated. The composites were fabricated using a hand-layup technique by varying the inflorescence fibre and glass-fibre reinforcement composition by (5, 10, 15 and 20) %. A notable improvement in the tensile and flexural strengths of 193.65 MPa and 240.69 MPa was observed for 85 % of glass and 15 % of benzoyl-chloride-modified inflorescence-fibre-reinforced hybrid composites. The elimination of amorphous constituents in the inflorescence fibres was checked by XRD and FTIR analyses. A surface-morphology analysis of unmodified and benzoyl-chloride-modified inflorescence fibres revealed pores and cavity formation on the fibril walls. These composites with superior mechanical properties can be an alternative to synthetic fibre composites and ensure the implementation of a circular economy and sustainable manufacturing.
期刊介绍:
The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.