带Delaunay端点的常q曲率度量:非简并情形

J. Andrade, Rayssa Caju, 'O JoaoMarcosdo, J. Ratzkin, Almir Silva Santos
{"title":"带Delaunay端点的常q曲率度量:非简并情形","authors":"J. Andrade, Rayssa Caju, 'O JoaoMarcosdo, J. Ratzkin, Almir Silva Santos","doi":"10.2422/2036-2145.202111_001","DOIUrl":null,"url":null,"abstract":"We construct a one-parameter family of solutions to the positive singular Q-curvature problem on compact nondegenerate manifolds of dimension bigger than four with finitely many punctures. If the dimension is at least eight we assume that the Weyl tensor vanishes to sufficiently high order at the singular points. On a technical level, we use perturbation methods and gluing techniques based on the mapping properties of the linearized operator both in a small ball around each singular point and in its exterior. Main difficulties in our construction include controlling the convergence rate of the Paneitz operator to the flat bi-Laplacian in conformal normal coordinates and matching the Cauchy data of the interior and exterior solutions; the latter difficulty arises from the lack of geometric Jacobi fields in the kernel of the linearized operator. We overcome both these difficulties by constructing suitable auxiliary functions.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Constant Q-curvature metrics with Delaunay ends: the nondegenerate case\",\"authors\":\"J. Andrade, Rayssa Caju, 'O JoaoMarcosdo, J. Ratzkin, Almir Silva Santos\",\"doi\":\"10.2422/2036-2145.202111_001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a one-parameter family of solutions to the positive singular Q-curvature problem on compact nondegenerate manifolds of dimension bigger than four with finitely many punctures. If the dimension is at least eight we assume that the Weyl tensor vanishes to sufficiently high order at the singular points. On a technical level, we use perturbation methods and gluing techniques based on the mapping properties of the linearized operator both in a small ball around each singular point and in its exterior. Main difficulties in our construction include controlling the convergence rate of the Paneitz operator to the flat bi-Laplacian in conformal normal coordinates and matching the Cauchy data of the interior and exterior solutions; the latter difficulty arises from the lack of geometric Jacobi fields in the kernel of the linearized operator. We overcome both these difficulties by constructing suitable auxiliary functions.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202111_001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202111_001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

构造了4维以上具有有限多个穿孔的紧致非退化流形上正奇异q曲率问题的一个单参数解族。如果维数至少为8,我们假设Weyl张量在奇异点处消失到足够高阶。在技术层面上,我们使用了基于线性化算子的映射性质的微扰方法和粘接技术,在每个奇点周围的小球和它的外部。本文构造的主要困难包括:控制Paneitz算子在共形正坐标系下对平面双拉普拉斯算子的收敛速度和内、外解的柯西数据的匹配;后者的困难是由于在线性化算子的核中缺少几何雅可比场。我们通过构造合适的辅助函数来克服这两个困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constant Q-curvature metrics with Delaunay ends: the nondegenerate case
We construct a one-parameter family of solutions to the positive singular Q-curvature problem on compact nondegenerate manifolds of dimension bigger than four with finitely many punctures. If the dimension is at least eight we assume that the Weyl tensor vanishes to sufficiently high order at the singular points. On a technical level, we use perturbation methods and gluing techniques based on the mapping properties of the linearized operator both in a small ball around each singular point and in its exterior. Main difficulties in our construction include controlling the convergence rate of the Paneitz operator to the flat bi-Laplacian in conformal normal coordinates and matching the Cauchy data of the interior and exterior solutions; the latter difficulty arises from the lack of geometric Jacobi fields in the kernel of the linearized operator. We overcome both these difficulties by constructing suitable auxiliary functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信