{"title":"教育和认证考试中贝叶斯和逻辑回归子尺度概率的准确性。","authors":"Lawrence M. Rudner","doi":"10.7275/Q7ZZ-D655","DOIUrl":null,"url":null,"abstract":"In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Naïve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows that the conclusion also applies to the probabilities estimated from short subtests of mental abilities and that small samples can yield excellent accuracy. The calculated Bayes probabilities can be used to provide meaningful examinee feedback regardless of whether the test was originally designed to be unidimensional.","PeriodicalId":20361,"journal":{"name":"Practical Assessment, Research and Evaluation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Accuracy of Bayes and Logistic Regression Subscale Probabilities for Educational and Certification Tests.\",\"authors\":\"Lawrence M. Rudner\",\"doi\":\"10.7275/Q7ZZ-D655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Naïve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows that the conclusion also applies to the probabilities estimated from short subtests of mental abilities and that small samples can yield excellent accuracy. The calculated Bayes probabilities can be used to provide meaningful examinee feedback regardless of whether the test was originally designed to be unidimensional.\",\"PeriodicalId\":20361,\"journal\":{\"name\":\"Practical Assessment, Research and Evaluation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Practical Assessment, Research and Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7275/Q7ZZ-D655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical Assessment, Research and Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7275/Q7ZZ-D655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
Accuracy of Bayes and Logistic Regression Subscale Probabilities for Educational and Certification Tests.
In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Naïve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows that the conclusion also applies to the probabilities estimated from short subtests of mental abilities and that small samples can yield excellent accuracy. The calculated Bayes probabilities can be used to provide meaningful examinee feedback regardless of whether the test was originally designed to be unidimensional.