{"title":"蓝宝石低语走廊模式固态微波激射振荡器的物理学","authors":"M. Mrad, A. Tarhini, P. Bourgeois, V. Giordano","doi":"10.1051/epjap/2020200107","DOIUrl":null,"url":null,"abstract":"The Cryogenic Sapphire Oscillator (CSO) is currently the best available technology that can provide a relative frequency stability better than 10−15 with integration times between 1 s and 10,000 s. But, the CSO remains a complex instrument that requires multiple loop controls to achieve the best frequency stability. The possibility to use the sapphire resonator in a self-sustained MASER oscillator presents an elegant alternative to the CSO. Here, sustaining the amplification is achieved through the interaction between a high-Q factor whispering gallery mode and the paramagnetic Fe3+ ions, which are present in small concentration in the sapphire crystal. The Fe3+ ion exhibits three energy states enabling to realize a self-sustaining solid-state maser. Although, this principle has been already experimentally demonstrated few years ago, its development as a truly usable ultra-stable source has not yet been completed, mainly due to the lack of control of the complex physical phenomena involved. This paper complements the previous theoretical work based on the rate equations model. Here we derive the full quantum equations describing the evolution of the Fe3+ ions inside the sapphire lattice and submitted to a pump and a maser signal. The influence of the ions concentration and spin-spin relaxation time will be pointed out.","PeriodicalId":12228,"journal":{"name":"European Physical Journal-applied Physics","volume":"11 1","pages":"31001"},"PeriodicalIF":0.9000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics of the sapphire whispering-gallery-mode solid-state MASER oscillator\",\"authors\":\"M. Mrad, A. Tarhini, P. Bourgeois, V. Giordano\",\"doi\":\"10.1051/epjap/2020200107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cryogenic Sapphire Oscillator (CSO) is currently the best available technology that can provide a relative frequency stability better than 10−15 with integration times between 1 s and 10,000 s. But, the CSO remains a complex instrument that requires multiple loop controls to achieve the best frequency stability. The possibility to use the sapphire resonator in a self-sustained MASER oscillator presents an elegant alternative to the CSO. Here, sustaining the amplification is achieved through the interaction between a high-Q factor whispering gallery mode and the paramagnetic Fe3+ ions, which are present in small concentration in the sapphire crystal. The Fe3+ ion exhibits three energy states enabling to realize a self-sustaining solid-state maser. Although, this principle has been already experimentally demonstrated few years ago, its development as a truly usable ultra-stable source has not yet been completed, mainly due to the lack of control of the complex physical phenomena involved. This paper complements the previous theoretical work based on the rate equations model. Here we derive the full quantum equations describing the evolution of the Fe3+ ions inside the sapphire lattice and submitted to a pump and a maser signal. The influence of the ions concentration and spin-spin relaxation time will be pointed out.\",\"PeriodicalId\":12228,\"journal\":{\"name\":\"European Physical Journal-applied Physics\",\"volume\":\"11 1\",\"pages\":\"31001\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Physical Journal-applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/epjap/2020200107\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Physical Journal-applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/epjap/2020200107","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Physics of the sapphire whispering-gallery-mode solid-state MASER oscillator
The Cryogenic Sapphire Oscillator (CSO) is currently the best available technology that can provide a relative frequency stability better than 10−15 with integration times between 1 s and 10,000 s. But, the CSO remains a complex instrument that requires multiple loop controls to achieve the best frequency stability. The possibility to use the sapphire resonator in a self-sustained MASER oscillator presents an elegant alternative to the CSO. Here, sustaining the amplification is achieved through the interaction between a high-Q factor whispering gallery mode and the paramagnetic Fe3+ ions, which are present in small concentration in the sapphire crystal. The Fe3+ ion exhibits three energy states enabling to realize a self-sustaining solid-state maser. Although, this principle has been already experimentally demonstrated few years ago, its development as a truly usable ultra-stable source has not yet been completed, mainly due to the lack of control of the complex physical phenomena involved. This paper complements the previous theoretical work based on the rate equations model. Here we derive the full quantum equations describing the evolution of the Fe3+ ions inside the sapphire lattice and submitted to a pump and a maser signal. The influence of the ions concentration and spin-spin relaxation time will be pointed out.
期刊介绍:
EPJ AP an international journal devoted to the promotion of the recent progresses in all fields of applied physics.
The articles published in EPJ AP span the whole spectrum of applied physics research.