托马斯-费米方程的解析近似解

V. Marinca, R. Ene
{"title":"托马斯-费米方程的解析近似解","authors":"V. Marinca, R. Ene","doi":"10.2478/s11534-014-0472-9","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM) to solve the nonlinear differential Thomas-Fermi equation. Our procedure does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. An excellent agreement was found between our approximate results and numerical solutions, which prove that OHAM is very efficient in practice, ensuring a very rapid convergence after only one iteration.","PeriodicalId":50985,"journal":{"name":"Central European Journal of Physics","volume":"54 1","pages":"503-510"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Analytical approximate solutions to the Thomas-Fermi equation\",\"authors\":\"V. Marinca, R. Ene\",\"doi\":\"10.2478/s11534-014-0472-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM) to solve the nonlinear differential Thomas-Fermi equation. Our procedure does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. An excellent agreement was found between our approximate results and numerical solutions, which prove that OHAM is very efficient in practice, ensuring a very rapid convergence after only one iteration.\",\"PeriodicalId\":50985,\"journal\":{\"name\":\"Central European Journal of Physics\",\"volume\":\"54 1\",\"pages\":\"503-510\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11534-014-0472-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11534-014-0472-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文的目的是展示如何使用最优同伦渐近方法(OHAM)来求解非线性微分Thomas-Fermi方程。我们的方法不依赖于小参数,并提供了一种方便的方法来最优地控制近似解的收敛性。我们的近似结果与数值解非常吻合,证明了OHAM算法在实践中是非常有效的,保证了只需一次迭代就能快速收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical approximate solutions to the Thomas-Fermi equation
The purpose of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM) to solve the nonlinear differential Thomas-Fermi equation. Our procedure does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. An excellent agreement was found between our approximate results and numerical solutions, which prove that OHAM is very efficient in practice, ensuring a very rapid convergence after only one iteration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Central European Journal of Physics
Central European Journal of Physics 物理-物理:综合
自引率
0.00%
发文量
0
审稿时长
3.3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信