Ardjouma Ganon, Manin Mathurin Taha, N’guessan Koffi, A. Toure
{"title":"具有neumann边界条件的非线性扩散方程的数值爆破","authors":"Ardjouma Ganon, Manin Mathurin Taha, N’guessan Koffi, A. Toure","doi":"10.22436/jnsa.014.02.03","DOIUrl":null,"url":null,"abstract":"This work is concerned with the study of the numerical approximation for the nonlinear diffusion equation (u)t = uxx, 0 < x < 1, t > 0, under Neumann boundary conditions ux(0, t) = 0, ux(1, t) = uα(1, t), t > 0. First, we obtain a semidiscrete scheme by the finite differences method and prove the convergence of its solution to the continuous one. Then, we establish the numerical blow-up and the convergence of the numerical blow-up time to the theoretical one when the mesh size goes to zero. Finally, we illustrate our analysis with some numerical experiments.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"35 1","pages":"80-88"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical blow-up for nonlinear diffusion equation with neumann boundary conditions\",\"authors\":\"Ardjouma Ganon, Manin Mathurin Taha, N’guessan Koffi, A. Toure\",\"doi\":\"10.22436/jnsa.014.02.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is concerned with the study of the numerical approximation for the nonlinear diffusion equation (u)t = uxx, 0 < x < 1, t > 0, under Neumann boundary conditions ux(0, t) = 0, ux(1, t) = uα(1, t), t > 0. First, we obtain a semidiscrete scheme by the finite differences method and prove the convergence of its solution to the continuous one. Then, we establish the numerical blow-up and the convergence of the numerical blow-up time to the theoretical one when the mesh size goes to zero. Finally, we illustrate our analysis with some numerical experiments.\",\"PeriodicalId\":22770,\"journal\":{\"name\":\"The Journal of Nonlinear Sciences and Applications\",\"volume\":\"35 1\",\"pages\":\"80-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/jnsa.014.02.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jnsa.014.02.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了非线性扩散方程(u)t = uxx, 0 < x < 1, t > 0,在Neumann边界条件下ux(0, t) = 0, ux(1, t) = uα(1, t), t > 0的数值逼近。首先,利用有限差分法得到了半离散格式,并证明了其解对连续格式的收敛性。然后,我们建立了数值爆破和当网格尺寸趋近于零时数值爆破时间与理论爆破时间的收敛性。最后,我们用一些数值实验来说明我们的分析。
Numerical blow-up for nonlinear diffusion equation with neumann boundary conditions
This work is concerned with the study of the numerical approximation for the nonlinear diffusion equation (u)t = uxx, 0 < x < 1, t > 0, under Neumann boundary conditions ux(0, t) = 0, ux(1, t) = uα(1, t), t > 0. First, we obtain a semidiscrete scheme by the finite differences method and prove the convergence of its solution to the continuous one. Then, we establish the numerical blow-up and the convergence of the numerical blow-up time to the theoretical one when the mesh size goes to zero. Finally, we illustrate our analysis with some numerical experiments.