具有neumann边界条件的非线性扩散方程的数值爆破

Ardjouma Ganon, Manin Mathurin Taha, N’guessan Koffi, A. Toure
{"title":"具有neumann边界条件的非线性扩散方程的数值爆破","authors":"Ardjouma Ganon, Manin Mathurin Taha, N’guessan Koffi, A. Toure","doi":"10.22436/jnsa.014.02.03","DOIUrl":null,"url":null,"abstract":"This work is concerned with the study of the numerical approximation for the nonlinear diffusion equation (u)t = uxx, 0 < x < 1, t > 0, under Neumann boundary conditions ux(0, t) = 0, ux(1, t) = uα(1, t), t > 0. First, we obtain a semidiscrete scheme by the finite differences method and prove the convergence of its solution to the continuous one. Then, we establish the numerical blow-up and the convergence of the numerical blow-up time to the theoretical one when the mesh size goes to zero. Finally, we illustrate our analysis with some numerical experiments.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"35 1","pages":"80-88"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical blow-up for nonlinear diffusion equation with neumann boundary conditions\",\"authors\":\"Ardjouma Ganon, Manin Mathurin Taha, N’guessan Koffi, A. Toure\",\"doi\":\"10.22436/jnsa.014.02.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is concerned with the study of the numerical approximation for the nonlinear diffusion equation (u)t = uxx, 0 < x < 1, t > 0, under Neumann boundary conditions ux(0, t) = 0, ux(1, t) = uα(1, t), t > 0. First, we obtain a semidiscrete scheme by the finite differences method and prove the convergence of its solution to the continuous one. Then, we establish the numerical blow-up and the convergence of the numerical blow-up time to the theoretical one when the mesh size goes to zero. Finally, we illustrate our analysis with some numerical experiments.\",\"PeriodicalId\":22770,\"journal\":{\"name\":\"The Journal of Nonlinear Sciences and Applications\",\"volume\":\"35 1\",\"pages\":\"80-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/jnsa.014.02.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jnsa.014.02.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非线性扩散方程(u)t = uxx, 0 < x < 1, t > 0,在Neumann边界条件下ux(0, t) = 0, ux(1, t) = uα(1, t), t > 0的数值逼近。首先,利用有限差分法得到了半离散格式,并证明了其解对连续格式的收敛性。然后,我们建立了数值爆破和当网格尺寸趋近于零时数值爆破时间与理论爆破时间的收敛性。最后,我们用一些数值实验来说明我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical blow-up for nonlinear diffusion equation with neumann boundary conditions
This work is concerned with the study of the numerical approximation for the nonlinear diffusion equation (u)t = uxx, 0 < x < 1, t > 0, under Neumann boundary conditions ux(0, t) = 0, ux(1, t) = uα(1, t), t > 0. First, we obtain a semidiscrete scheme by the finite differences method and prove the convergence of its solution to the continuous one. Then, we establish the numerical blow-up and the convergence of the numerical blow-up time to the theoretical one when the mesh size goes to zero. Finally, we illustrate our analysis with some numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信