{"title":"新的邻居搜索的上界","authors":"B. Chazelle , R. Cole , F.P. Preparata , C. Yap","doi":"10.1016/S0019-9958(86)80030-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the circular retrieval problem and the <em>k</em>-nearest neighbor problem, for sets of <em>n</em> points in the Euclidean plane. Two similar data structures each solve both problems. A deterministic structure uses space <em>O</em>(<em>n</em>(log <em>n</em> log log <em>n</em>)<sup>2</sup>), and a probabilistic structure uses space <em>O</em>(<em>n</em> log<sup>2</sup> <em>n</em>). For both problems, these two structures answer a query that returns <em>k</em> points in <em>O</em>(<em>k</em> + log <em>n</em>) time.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":"68 1","pages":"Pages 105-124"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80030-4","citationCount":"19","resultStr":"{\"title\":\"New upper bounds for neighbor searching\",\"authors\":\"B. Chazelle , R. Cole , F.P. Preparata , C. Yap\",\"doi\":\"10.1016/S0019-9958(86)80030-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the circular retrieval problem and the <em>k</em>-nearest neighbor problem, for sets of <em>n</em> points in the Euclidean plane. Two similar data structures each solve both problems. A deterministic structure uses space <em>O</em>(<em>n</em>(log <em>n</em> log log <em>n</em>)<sup>2</sup>), and a probabilistic structure uses space <em>O</em>(<em>n</em> log<sup>2</sup> <em>n</em>). For both problems, these two structures answer a query that returns <em>k</em> points in <em>O</em>(<em>k</em> + log <em>n</em>) time.</p></div>\",\"PeriodicalId\":38164,\"journal\":{\"name\":\"信息与控制\",\"volume\":\"68 1\",\"pages\":\"Pages 105-124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80030-4\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息与控制\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019995886800304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019995886800304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 19
摘要
本文研究了欧几里德平面上n个点的集合的圆检索问题和k近邻问题。两个类似的数据结构各自解决了这两个问题。确定性结构使用空间O(n(log n log n)2),概率结构使用空间O(n log2n)。对于这两个问题,这两种结构在O(k + log n)时间内回答一个返回k个点的查询。
This paper investigates the circular retrieval problem and the k-nearest neighbor problem, for sets of n points in the Euclidean plane. Two similar data structures each solve both problems. A deterministic structure uses space O(n(log n log log n)2), and a probabilistic structure uses space O(n log2n). For both problems, these two structures answer a query that returns k points in O(k + log n) time.