{"title":"整体弱可解性,对数据的持续依赖,膨胀移动界面增长时间大","authors":"K. Kumazaki, A. Muntean","doi":"10.4171/ifb/431","DOIUrl":null,"url":null,"abstract":"We prove a global existence result for weak solutions to a one-dimensional free boundary problem with flux boundary conditions describing swelling along a halfline. Additionally, we show that solutions are not only unique but also depend continuously on data and parameters. The key observation is that the structure of our system of partial differential equations allows us to show that the moving a priori unknown interface never disappears. As main ingredients of the global existence proof, we rely on a local weak solvability result for our problem, uniform estimates of the solution, integral estimates on quantities defined at the free boundary, as well as a fine pointwise lower bound for the position of the moving boundary. Some of the estimates are time-independent. They allow us to explore the large time behavior of the position of the moving boundary. The approach is specific to one-dimensional settings.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Global weak solvability, continuous dependence on data, and large time growth of swelling moving interfaces\",\"authors\":\"K. Kumazaki, A. Muntean\",\"doi\":\"10.4171/ifb/431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a global existence result for weak solutions to a one-dimensional free boundary problem with flux boundary conditions describing swelling along a halfline. Additionally, we show that solutions are not only unique but also depend continuously on data and parameters. The key observation is that the structure of our system of partial differential equations allows us to show that the moving a priori unknown interface never disappears. As main ingredients of the global existence proof, we rely on a local weak solvability result for our problem, uniform estimates of the solution, integral estimates on quantities defined at the free boundary, as well as a fine pointwise lower bound for the position of the moving boundary. Some of the estimates are time-independent. They allow us to explore the large time behavior of the position of the moving boundary. The approach is specific to one-dimensional settings.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/431\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/431","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Global weak solvability, continuous dependence on data, and large time growth of swelling moving interfaces
We prove a global existence result for weak solutions to a one-dimensional free boundary problem with flux boundary conditions describing swelling along a halfline. Additionally, we show that solutions are not only unique but also depend continuously on data and parameters. The key observation is that the structure of our system of partial differential equations allows us to show that the moving a priori unknown interface never disappears. As main ingredients of the global existence proof, we rely on a local weak solvability result for our problem, uniform estimates of the solution, integral estimates on quantities defined at the free boundary, as well as a fine pointwise lower bound for the position of the moving boundary. Some of the estimates are time-independent. They allow us to explore the large time behavior of the position of the moving boundary. The approach is specific to one-dimensional settings.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.