黑色素瘤病灶及其边界的分割

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
G. Surówka, M. Ogorzałek
{"title":"黑色素瘤病灶及其边界的分割","authors":"G. Surówka, M. Ogorzałek","doi":"10.34768/amcs-2022-0047","DOIUrl":null,"url":null,"abstract":"Abstract Segmentation of the border of the human pigmented lesions has a direct impact on the diagnosis of malignant melanoma. In this work, we examine performance of (i) morphological segmentation of a pigmented lesion by region growing with the adaptive threshold and density-based DBSCAN clustering algorithm, and (ii) morphological segmentation of the pigmented lesion border by region growing of the lesion and the background skin. Research tasks (i) and (ii) are evaluated by a human expert and tested on two data sets, A and B, of different origins, resolution, and image quality. The preprocessing step consists of removing the black frame around the lesion and reducing noise and artifacts. The halo is removed by cutting out the dark circular region and filling it with an average skin color. Noise is reduced by a family of Gaussian filters 3×3−7×7 to improve the contrast and smooth out possible distortions. Some other filters are also tested. Artifacts like dark thick hair or ruler/ink markers are removed from the images by using the DullRazor closing images for all RGB colors for a hair brightness threshold below a value of 25 or, alternatively, by the BTH transform. For the segmentation, JFIF luminance representation is used. In the analysis (i), out of each dermoscopy image, a lesion segmentation mask is produced. For the region growing we get a sensitivity of 0.92/0.85, a precision of 0.98/0.91, and a border error of 0.08/0.15 for data sets A/B, respectively. For the density-based DBSCAN algorithm, we get a sensitivity of 0.91/0.89, a precision of 0.95/0.93, and a border error of 0.09/0.12 for data sets A/B, respectively. In the analysis (ii), out of each dermoscopy image, a series of lesion, background, and border segmentation images are derived. We get a sensitivity of about 0.89, a specificity of 0.94 and an accuracy of 0.91 for data set A, and a sensitivity of about 0.85, specificity of 0.91 and an accuracy of 0.89 for data set B. Our analyses show that the improved methods of region growing and density-based clustering performed after proper preprocessing may be good tools for the computer-aided melanoma diagnosis.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"29 1","pages":"683 - 699"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of the Melanoma Lesion and its Border\",\"authors\":\"G. Surówka, M. Ogorzałek\",\"doi\":\"10.34768/amcs-2022-0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Segmentation of the border of the human pigmented lesions has a direct impact on the diagnosis of malignant melanoma. In this work, we examine performance of (i) morphological segmentation of a pigmented lesion by region growing with the adaptive threshold and density-based DBSCAN clustering algorithm, and (ii) morphological segmentation of the pigmented lesion border by region growing of the lesion and the background skin. Research tasks (i) and (ii) are evaluated by a human expert and tested on two data sets, A and B, of different origins, resolution, and image quality. The preprocessing step consists of removing the black frame around the lesion and reducing noise and artifacts. The halo is removed by cutting out the dark circular region and filling it with an average skin color. Noise is reduced by a family of Gaussian filters 3×3−7×7 to improve the contrast and smooth out possible distortions. Some other filters are also tested. Artifacts like dark thick hair or ruler/ink markers are removed from the images by using the DullRazor closing images for all RGB colors for a hair brightness threshold below a value of 25 or, alternatively, by the BTH transform. For the segmentation, JFIF luminance representation is used. In the analysis (i), out of each dermoscopy image, a lesion segmentation mask is produced. For the region growing we get a sensitivity of 0.92/0.85, a precision of 0.98/0.91, and a border error of 0.08/0.15 for data sets A/B, respectively. For the density-based DBSCAN algorithm, we get a sensitivity of 0.91/0.89, a precision of 0.95/0.93, and a border error of 0.09/0.12 for data sets A/B, respectively. In the analysis (ii), out of each dermoscopy image, a series of lesion, background, and border segmentation images are derived. We get a sensitivity of about 0.89, a specificity of 0.94 and an accuracy of 0.91 for data set A, and a sensitivity of about 0.85, specificity of 0.91 and an accuracy of 0.89 for data set B. Our analyses show that the improved methods of region growing and density-based clustering performed after proper preprocessing may be good tools for the computer-aided melanoma diagnosis.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"29 1\",\"pages\":\"683 - 699\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2022-0047\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0047","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要人类色素病变边界的分割对恶性黑色素瘤的诊断有直接的影响。在这项工作中,我们研究了(i)使用自适应阈值和基于密度的DBSCAN聚类算法通过区域生长对色素病变进行形态学分割的性能,以及(ii)通过病变和背景皮肤的区域生长对色素病变边界进行形态学分割。研究任务(i)和(ii)由人类专家评估,并在不同来源、分辨率和图像质量的两个数据集a和B上进行测试。预处理步骤包括去除病灶周围的黑帧,降低噪声和伪影。通过剪掉黑色的圆形区域,并用平均肤色填充它来去除晕。噪声通过一系列高斯滤波器3×3−7×7来降低,以提高对比度并平滑可能的失真。其他一些过滤器也进行了测试。通过使用DullRazor关闭所有RGB颜色的图像,使头发亮度阈值低于25,或者通过BTH变换,从图像中去除深色浓密的头发或尺子/墨水标记等伪影。对于分割,使用JFIF亮度表示。在分析(i)中,从每个皮肤镜图像中产生一个病灶分割掩码。对于区域增长,a /B数据集的灵敏度为0.92/0.85,精度为0.98/0.91,边界误差为0.08/0.15。基于密度的DBSCAN算法对数据集a /B的灵敏度为0.91/0.89,精度为0.95/0.93,边界误差为0.09/0.12。在分析(ii)中,从每个皮肤镜图像中,衍生出一系列病变,背景和边界分割图像。我们得到数据集a的灵敏度约为0.89,特异性为0.94,准确率为0.91;数据集b的灵敏度约为0.85,特异性为0.91,准确率为0.89。我们的分析表明,经过适当预处理后改进的区域生长和基于密度的聚类方法可能是计算机辅助黑色素瘤诊断的良好工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of the Melanoma Lesion and its Border
Abstract Segmentation of the border of the human pigmented lesions has a direct impact on the diagnosis of malignant melanoma. In this work, we examine performance of (i) morphological segmentation of a pigmented lesion by region growing with the adaptive threshold and density-based DBSCAN clustering algorithm, and (ii) morphological segmentation of the pigmented lesion border by region growing of the lesion and the background skin. Research tasks (i) and (ii) are evaluated by a human expert and tested on two data sets, A and B, of different origins, resolution, and image quality. The preprocessing step consists of removing the black frame around the lesion and reducing noise and artifacts. The halo is removed by cutting out the dark circular region and filling it with an average skin color. Noise is reduced by a family of Gaussian filters 3×3−7×7 to improve the contrast and smooth out possible distortions. Some other filters are also tested. Artifacts like dark thick hair or ruler/ink markers are removed from the images by using the DullRazor closing images for all RGB colors for a hair brightness threshold below a value of 25 or, alternatively, by the BTH transform. For the segmentation, JFIF luminance representation is used. In the analysis (i), out of each dermoscopy image, a lesion segmentation mask is produced. For the region growing we get a sensitivity of 0.92/0.85, a precision of 0.98/0.91, and a border error of 0.08/0.15 for data sets A/B, respectively. For the density-based DBSCAN algorithm, we get a sensitivity of 0.91/0.89, a precision of 0.95/0.93, and a border error of 0.09/0.12 for data sets A/B, respectively. In the analysis (ii), out of each dermoscopy image, a series of lesion, background, and border segmentation images are derived. We get a sensitivity of about 0.89, a specificity of 0.94 and an accuracy of 0.91 for data set A, and a sensitivity of about 0.85, specificity of 0.91 and an accuracy of 0.89 for data set B. Our analyses show that the improved methods of region growing and density-based clustering performed after proper preprocessing may be good tools for the computer-aided melanoma diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
4.2 months
期刊介绍: The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences. The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas: -modern control theory and practice- artificial intelligence methods and their applications- applied mathematics and mathematical optimisation techniques- mathematical methods in engineering, computer science, and biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信