{"title":"双模压缩腔光子的纠缠波动谱","authors":"S. Getahun","doi":"10.4172/0976-4860.1000155","DOIUrl":null,"url":null,"abstract":"We analyze the spectrum of entanglement fluctuations and local entanglement that holds true for the two-mode photon system. We also present a definition for the degree of local entanglement. In order to carry out our analysis, we consider a quantum system with a Gaussian variable with zero mean. It is found that 50% maximum degree of entanglement as well as 75% maximum degree of squeezing occurs at steadystate and threshold in the given frequency interval.","PeriodicalId":90538,"journal":{"name":"International journal of advancements in computing technology","volume":"20 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spectrum of Entanglement Fluctuations from the Two-Mode Squeezed Cavity Photons\",\"authors\":\"S. Getahun\",\"doi\":\"10.4172/0976-4860.1000155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the spectrum of entanglement fluctuations and local entanglement that holds true for the two-mode photon system. We also present a definition for the degree of local entanglement. In order to carry out our analysis, we consider a quantum system with a Gaussian variable with zero mean. It is found that 50% maximum degree of entanglement as well as 75% maximum degree of squeezing occurs at steadystate and threshold in the given frequency interval.\",\"PeriodicalId\":90538,\"journal\":{\"name\":\"International journal of advancements in computing technology\",\"volume\":\"20 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of advancements in computing technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/0976-4860.1000155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of advancements in computing technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/0976-4860.1000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectrum of Entanglement Fluctuations from the Two-Mode Squeezed Cavity Photons
We analyze the spectrum of entanglement fluctuations and local entanglement that holds true for the two-mode photon system. We also present a definition for the degree of local entanglement. In order to carry out our analysis, we consider a quantum system with a Gaussian variable with zero mean. It is found that 50% maximum degree of entanglement as well as 75% maximum degree of squeezing occurs at steadystate and threshold in the given frequency interval.