基于超图匹配的运动结构对应

H. Chang, Tobias Fischer, Maxime Petit, Martina Zambelli, Y. Demiris
{"title":"基于超图匹配的运动结构对应","authors":"H. Chang, Tobias Fischer, Maxime Petit, Martina Zambelli, Y. Demiris","doi":"10.1109/CVPR.2016.457","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel framework for finding the kinematic structure correspondence between two objects in videos via hypergraph matching. In contrast to prior appearance and graph alignment based matching methods which have been applied among two similar static images, the proposed method finds correspondences between two dynamic kinematic structures of heterogeneous objects in videos. Our main contributions can be summarised as follows: (i) casting the kinematic structure correspondence problem into a hypergraph matching problem, incorporating multi-order similarities with normalising weights, (ii) a structural topology similarity measure by a new topology constrained subgraph isomorphism aggregation, (iii) a kinematic correlation measure between pairwise nodes, and (iv) a combinatorial local motion similarity measure using geodesic distance on the Riemannian manifold. We demonstrate the robustness and accuracy of our method through a number of experiments on complex articulated synthetic and real data.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"10 1","pages":"4216-4225"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Kinematic Structure Correspondences via Hypergraph Matching\",\"authors\":\"H. Chang, Tobias Fischer, Maxime Petit, Martina Zambelli, Y. Demiris\",\"doi\":\"10.1109/CVPR.2016.457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel framework for finding the kinematic structure correspondence between two objects in videos via hypergraph matching. In contrast to prior appearance and graph alignment based matching methods which have been applied among two similar static images, the proposed method finds correspondences between two dynamic kinematic structures of heterogeneous objects in videos. Our main contributions can be summarised as follows: (i) casting the kinematic structure correspondence problem into a hypergraph matching problem, incorporating multi-order similarities with normalising weights, (ii) a structural topology similarity measure by a new topology constrained subgraph isomorphism aggregation, (iii) a kinematic correlation measure between pairwise nodes, and (iv) a combinatorial local motion similarity measure using geodesic distance on the Riemannian manifold. We demonstrate the robustness and accuracy of our method through a number of experiments on complex articulated synthetic and real data.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"10 1\",\"pages\":\"4216-4225\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种利用超图匹配来寻找视频中两个对象之间的运动结构对应关系的新框架。与之前在两个相似的静态图像之间应用的基于外观和图对齐的匹配方法相比,该方法发现了视频中异构对象的两个动态运动学结构之间的对应关系。我们的主要贡献可以总结如下:(i)将运动结构对应问题转化为超图匹配问题,将多阶相似度与归一化权重相结合,(ii)通过新的拓扑约束子图同构聚集的结构拓扑相似性度量,(iii)两两节点之间的运动相关性度量,以及(iv)使用黎曼流形上的测地距离的组合局部运动相似性度量。通过对复杂关节合成数据和实际数据的大量实验,证明了该方法的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinematic Structure Correspondences via Hypergraph Matching
In this paper, we present a novel framework for finding the kinematic structure correspondence between two objects in videos via hypergraph matching. In contrast to prior appearance and graph alignment based matching methods which have been applied among two similar static images, the proposed method finds correspondences between two dynamic kinematic structures of heterogeneous objects in videos. Our main contributions can be summarised as follows: (i) casting the kinematic structure correspondence problem into a hypergraph matching problem, incorporating multi-order similarities with normalising weights, (ii) a structural topology similarity measure by a new topology constrained subgraph isomorphism aggregation, (iii) a kinematic correlation measure between pairwise nodes, and (iv) a combinatorial local motion similarity measure using geodesic distance on the Riemannian manifold. We demonstrate the robustness and accuracy of our method through a number of experiments on complex articulated synthetic and real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信